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\ corrections in semiclassical formulas for smooth chaotic dynamics
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Laboratoire Kastler Brossel, Universite´ Pierre et Marie Curie, T12, E1 4, Place Jussieu 75252, Paris cedex 05, France

~Received 13 July 2001; published 30 April 2002!

The validity of semiclassical expansions in the power of\ for the quantum Green’s function have been
extensively tested for billiards systems, but in the case of chaotic dynamics with smooth potential, even if
formulas are existing, a quantitative comparison is still missing. In this paper, extending the theory developed
by Gaspardet al. @Adv. Chem. Phys.90, 105 ~1995!#, based on the classical Green’s functions, we present an
efficient method allowing the calculation of\ corrections for the propagator, the quantum Green’s function,
and their traces. In particular, we show that the previously published expressions for\ corrections to the traces
are incomplete.
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I. INTRODUCTION

Gutzwiller’s work has now become a milestone in t
understanding of the properties of a quantum system wh
classical counterpart depicts chaotic dynamics@1#. Starting
from Feynman’s path formulation of quantum mechanics,
has been able to complete the early studies of Van Vleck@2#,
deriving expressions for the semiclassical propagator,
from this, for the quantum level density: the well-know
Gutzwiller trace formula. The latter is an asymptotic series
\ and can be separated into two parts; the leading o
corresponds to the Thomas-Fermi~or extended Thomas
Fermi when including\ corrections! average density o
states @3#; the other part corresponds to the oscillatio
around the preceding term and involves contributions fr
all periodic orbits of the system. This formula has be
widely used to obtain approximate values for the quant
energy eigenvalues of classically chaotic systems: the hy
gen atom in magnetic field@4,5#, the helium atom@6–8#,
anisotropic Kepler problem@1#, resonant tunnel diode@9#,
billiards @10–13#, etc. Since then, the Gutzwiller trace fo
mula has also been generalized to take into account co
butions of other kinds: diffractive effects@14#, continuous
families of periodic orbits@13,15,16#, ghost orbits, etc.

At the same time, because the trace formula as derive
Gutzwiller only contained the leading term of the asympto
expansion of the quantum level density, the systematic
pansion of the semiclassical propagator in powers of\ has
been the purpose of several studies@12,13,17#. However,
these corrections to the trace formula have only been te
for billiards, for which both classical and quantum propert
are easier to calculate. In the present paper, we will sh
how, for quantum systems whose Hamiltonian separates
kinetic and smooth potential energies,\ corrections can be
computed with great accuracy, extending the method
scribed in Refs.@12,13#, based on classical Green’s fun
tions. In particular, we will show that the previous derivati
@12,13# of the correction to Gutzwiller trace formula is pa
tially wrong.
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From a numerical point of view, all quantities involved
the calculation of the\ corrections for a given classical pat
can be obtained as solutions of sets of first order differen
equations to be integrated along this path using standard
integrators like the Runge-Kutta method. The number
equations in these sets can be quite large and can be prob
reduced with a deeper analysis of their structures, in
same way that the amplitude in the Gutzwiller trace form
for a two-dimensional~2D! system can be obtained by inte
grating only a (232) matrix and not the whole monodrom
matrix @18#. However, it would give rise to more complicate
expressions and probably to additional difficulties in the n
merical implementation, whereas the expressions given
the paper can be put in the computer as they stand. Also
amount of CPU time and the memory needed by the co
are small enough, so that, on a first stage, the reduction o
number of equations can be skipped.

The paper is divided as follows. In Sec. II, expressions
the classical Green’s functions involved in the\ correction
to the semiclassical propagatorK(q,q0 ,T) are derived. Then,
we explain how to get a numerical implementation of the
formulas allowing an efficient computation of the\ correc-
tion. In Sec. III, we develop a numerical method to get t
additional terms, arising from the time to energy doma
transformation, in\ correction for the quantum Green
function G(q,q0 ,T). In the case of the trace of the propag
tor, essential steps for the derivation of the\ correction are
described in Sec. IV, leading to the proper formulas, alo
with the way they can be computed. The time to ene
transformation is explained in Sec. V, leading to the\ cor-
rection expression in the case of the quantum Green’s fu
tion. Finally, Sec. VI shows how to apply theoretical expre
sions obtained in the four preceding sections in the cas
the 2D hydrogen in magnetic field and emphasizes the ex
lent agreement with numerical coefficients extracted fr
exact quantum calculation, using harmonic inversi
@19–21#.

II. THE PROPAGATOR K„q,q0 ,T…

A. Feynman path integral

The starting point is the Feynman path integral, who
discrete version, for a time independent Hamiltonian wh
©2002 The American Physical Society07-1
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BENOÎT GRÉMAUD PHYSICAL REVIEW E 65 056207
separates into kinetic and potential energies,Ĥ5p̂2/2
1V(q̂), reads as follows@13#:

K~q,q0 ,T!5E dq1dq2 , . . . ,dqN21~2p i\Dt !2N f /2

3expF i

\ (
n50

N21

LS qn112qn

Dt
,qnDDt1O~Dt !G ,

~1!

where Dt5T/N, qN5q, and L(q̇,q) is the classical La-
grangian.

For small values of\ ~i.e., the semiclassical limit!, using
the stationary phase approximation, all preceding integ
are expanded around the stationary solutions, that is the
sical orbitsql

cl(t) going fromq0 to q during timeT, each of
them thus giving a contributionKl(q,q0 ,T) to the propaga-
tor, whose final expression reads formally as follows@13#:

Kl~q,q0 ,T!5Kl
(0)~q,q0 ,T!$11 i\C1~q,q0 ,T!1O~\2!%,

~2!

whereKl
(0)(q,q0 ,T) is the dominant semiclassical contrib

tion to the propagatorK(q,q0 ,T):

Kl
(0)~q,q0 ,T!5

1

~2p i\! f /2UdetS 2
]2

]q]q0
Wl

cl~q,q0 ,T! D U1/2

3expF i

\
Wl

cl~q,q0 ,T!2 i
p

2
n l G , ~3!

whereWl
cl(q,q0 ,T) is the classical action andn l is the Morse

index of the orbit. TheC1(q,q0 ,T) expression is given by
@13#

1

8E0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !

1
1

24E0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3@3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!

12Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!#, ~4!

where theV(n)(t) are higher-order derivatives of the pote
tial V, evaluated atql

cl(t).
The classical Green’s functionG(t,t8), associated with the

classical orbit, is an (f 3 f ) matrix solution of the following
equation@13#:

D•G~ t,t8!51d~ t2t8!, ~5!

where D is the Jacobi-Hill operator, controlling the linea
stability around the classical orbit in the configuration spa
@13#
05620
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d2

dt2
12

]2V

]q]q
@qcl~ t !#. ~6!

Furthermore, the fact that both initial and final point are fix
in the propagatorK(q,q0 ,T) imposes the following bound
ary conditions on the classical Green’s function@13#:

G~0,t8!5G~T,t8!50 ; t8P@0,T#. ~7!

B. Classical Green’s function

If ql(T) is a conjugate point ofq0, then the determinan
det(2]qq0

2 Wl
cl) in formula ~3! is formally infinite, but this

happens only for restricted values ofT, so that, in this sec-
tion, we will focus on the general case, for whichql(T) and
q0 are not conjugate points.

Apart from t5t8, G(t,t8) obeying the homogeneou
Jacobi-Hill equationD•G50, so that, introducing the nota
tions

G2~ t,t8!5G~ t,t8! for 0<t<t8,

G1~ t,t8!5G~ t,t8! for t8<t<T, ~8!

one immediately obtains

S G6~ t,t8!

Ġ6~ t,t8!
D 5M ~ t !S A6~ t8!

B6~ t8!
D , ~9!

whereM (t) is the (2f 32 f ) monodromy matrix, depicting
the linear stability around the classical orbit in the pha
space.A6 and B6 are four (f 3 f ) matrices, whose value
are determined from the boundary conditions at timet5t8:

G1~ t8,t8!2G2~ t8,t8!50,

dG2

dt
~ t8,t8!2

dG1

dt
~ t8,t8!51 ~10!

and at timest50 andt5T:

G2~0,t8!50,

G1~T,t8!50. ~11!

For a Hamiltonian which separates between kinetic a
potential energyH5p2/21V(q), M (t) has the following
simple structure:

M ~ t !5FJ2~ t ! J1~ t !

J̇2~ t ! J̇1~ t !
G , ~12!

which leads us to the following explicit expressions for t
four matricesA6 andB6 :
7-2
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A2~ t8!50,

B2~ t8!5J2
Á~ t8!2J1

21~T!J2~T!J1
Á~ t8!,

A1~ t8!5J1
Á~ t8!,

B1~ t8!52J1
21~T!J2~T!J1

Á~ t8!, ~13!

provided thatJ1
21(T) is invertible. J1(T) being the upper
-
et

ica

b
ia
a

r
d
ra

te
e

i-

-

05620
right ( f 3 f ) submatrix of the matrixM, gives the linear dis-
placement of the final position for a change in the init
momentum ~the initial position being fixed toq0), i.e.,
dq(T)5J1(T)dp0. Thus, J1(T) is the inverse matrix of
(2]qq0

2 Wl
cl) which has been supposed to be invertible@q(T)

andq0 are not conjugate points#. Finally, the full expression
for the classical Green’s function reads
G~ t,t8!5H J1~ t ! @J2
Á~ t8!2J1

21~T!J2~T!J1
Á~ t8!# for 0<t<t8,

@J2~ t !2J1~ t !J1
21~T!J2~T!# J1

Á~ t8! for t8<t<T.
~14!
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Using the symplectic structure ofM (T), one can show that

G~ t8,t !5G Á~ t,t8! ~15!

as expected because the operatorD and the boundary condi
tions are symmetric as it explicitly appears in the discr
version of the problem~see Ref.@13#!. This is also empha-
sized in Fig. 1, where the four matrix elements of a class
Green’s functionG(t,t8) ~for t8/T50.6) are plotted with re-
spect to timet. This example corresponds to a classical or
of the 2D hydrogen atom in a magnetic field having init
and final points on the nucleus, namely, the closed orbit h
ing code 0—and whose trajectory in (u,v) coordinates is
also shown in the figure.~See Sec. VI for all details.! As

FIG. 1. Example of a classical Green’s functionG(t,t8) in-
volved in the calculation of the\ corrections for the propagato
K(q,q0 ,T), for the caseq5q050. It is associated with the close
orbit 1243 of the 2D hydrogen atom in magnetic field, whose t
jectory in (u,v) coordinates is inserted in the plot~see Sec. VI for
all details!. This trajectory starts and ends at the nucleus, depic
by the black circle. Each curve corresponds to a matrix elem
Gi j (t,t8) plotted with respect to timet, for t8/T50.6. As expected
from boundary conditions~7!, the Green’s function vanishes at in
tial and final times@i.e., G(0,t8)5G(T,t8)50# and for t5t8, the
derivatives of diagonal elements,G11(t8,t8) ~continuous line! and
G22(t8,t8) ~long dashed line!, are discontinuous whereas, from sym
metry property~15! @i.e., G Á(t,t8)5G(t8,t)#, the two off-diagonal
elements are equal~dotted and dashed lines!.
e

l

it
l
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expected, the Green’s function vanishes at initial and fi
times @i.e., G(0,t8)5G(T,t8)50# and for t5t8, the deriva-
tives of each diagonal elementG11(t8,t8) ~continuous line!
andG22(t8,t8) ~long dashed line! are discontinuous whereas
from property~15!, the two off-diagonal elements are equ
~dotted and dashed lines!.

C. Getting C1„q,q0 ,T… by integrating a set of first order
differential equations

From Eq.~4!, there are three contributions toC1(q,q0 ,T),
namely,

I 1~T!5E
0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

I 2
1~T!5E

0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!, ~16!

I 2
2~T!5E

0

TE
0

T

dt dt8Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!.

Even if, in principle, one can computeG(t,t8) for any (t,t8)
values using Eq.~14!, direct evaluation of the double inte
grals I 2

6 would be time consuming and numerically ineffi
cient using standard integration routines, especially beca
from its definition,G(t,t8) is not a smooth function aroun
the linet5t8. In what follows, we will show that the preced
ing integrals can be transformed in such a way that th
values can be obtained integrating a set of first order dif
ential equations along the classical orbit, in the same w
that, for example, the monodromy matrixM (T) can be com-
puted.
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Separatingt.t8 and t,t8 contributions in I 2
6 , using

symmetry property~15! of G(t,t8) and that the matrixV(3) is
fully symmetric under index permutations, one gets, a
straightforward algebra,

I 2
1~T!52E

0

T

dtE
0

t

dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!,

I 2
2~T!52E

0

T

dtE
0

t

dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!. ~17!

In the preceding expressions the Green’s functionG(t,t8) is
used only for (t,t8) values in the triangle 0<t8<t<T and is
formally written G(t,t8)5B2

Á(t)J1
Á(t8) @see Eq.~14!#, thus

separatingt and t8 contributions:

I 2
1~T!52E

0

T

dt Vi jk
(3)~ t !Gi j ~ t,t !Bpk

2 ~ t !

3E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!Gmn~ t8,t8!,

I 2
2~T!52E

0

T

dt Vi jk
(3)~ t !Bpi

2~ t !Bq j
2 ~ t !Brk

2 ~ t !

3E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!J1mq~ t8!J1nr~ t8!.

~18!

This leads us to introduce two intermediate quantiti
namely,Pp(t) andQpqr(t) ~for p, q and r running from 1
to f ):

Pp~ t !5E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!Gmn~ t8,t8!,

Qpqr~ t !5E
0

t

dt8 Vlmn
(3) ~ t8!J1lp~ t8!J1mq~ t8!J1nr~ t8! ~19!

in a way such thatI 2
6(T) @and I 1(T)# are solutions of the

following set of differential equations@besides equations fo
X(t) andM (t)#:

İ 15Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

Ṗp5Vlmn
(3) ~ t !J1lp~ t !Gmn~ t,t !,

İ 2
15Vi jk

(3)~ t !Gi j ~ t,t !Bpk
2 ~ t !Pp~ t !,

Q̇pqr5Vlmn
(3) ~ t !J1lp~ t !J1mq~ t !J1nr~ t !,

İ 2
25Vi jk

(3)~ t !Bpi
2~ t !Bq j

2 ~ t !Brk
2 ~ t !Qpqr~ t ! ~20!

with initial conditions I 1(0)5I 2
6(0)5Pp(0)5Qpqr(0)50.

This set of equations,f 314 f 213 f 13 in total ~i.e., 33 for a
2D system! is easily integrated using any standard meth
05620
r

,

d

~fourth order Runge-Kutta in the present case!. As mentioned
in the Introduction, the size of the preceding differential s
is probably not minimal and could be reduced by a dee
analysis of the structure of these equations. However, it
lows a fast and easy computation of the correct
C1(q,q0 ,T):

~1! find a trajectory going fromq0 to q in time T;
~2! integrate the differential set forX(t) andM (t) along

the trajectory to obtain the quantityJ1
21(T)J2(T);

~3! integrate the set of Eqs.~20! along the trajectory to ge
the three quantitiesI 1 , I 2

6 , entering in theC1(q,q0 ,T) ex-
pression.

III. THE GREEN’S FUNCTION G„q,q0 ,E…

A. Going from time to energy domain

Since the quantum Green’s functionG(q,q0 ,E) is related
to the propagatorK(q,q0 ,T), through a semisided Fourie
transform, this relation also holds between semiclassical c
tributions arising from each classical orbit, more precisel

Gl~q,q0 ,E!5
1

i\E0

1`

dT expS i

\
ETDKl~q,q0 ,T!. ~21!

Again, a stationary phase approximation is used to perfo
the integral, which, for a given trajectory going fromq0 to q,
selects its total durationT0 such that the classical motion i
made at energyE. This operation also gives rise to addition
terms in\ corrections, to be summed withC1(q,q0 ,T), and
whose explicit expressions can be derived starting from
~4! formally written as follows@13#:

Kl~q,q0 ,T!5
1

~2p i\! f /2
expF i

\
Wl~q,q0 ,T!

2 i
p

2
n l1C0~q,q0 ,T!

1 i\C1~q,q0 ,T!G , ~22!

C0(q,q0 ,T) being the~logarithm of! usual semiclassical am
plitude. ThenWl(q,q0 ,T) and C0(q,q0 ,T) are systemati-
cally expanded aroundT0:

Wl~q,q0 ,T!5Wl
(0)1dT Wl

(1)1
dT2

2
Wl

(2)

1
dT3

6
Wl

(3)1
dT4

24
Wl

(4) ,

C0~q,q0 ,T!5C0
(0)1dT C0

(1)1
dT2

2
C0

(2), ~23!

with dT5(T2T0). Terms arising fromC1(T) expansion
would contribute only to\2 correction and can be discarde
Performing the imaginary Gaussian integrals leads to the
ditional \ corrections:
7-4
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C1
T→E~q,q0 ,T0!5

1

2Wl
(2) @~C0

(1)!21C0
(2)#

2
Wl

(3)C0
(1)

2~Wl
(2)!2

2
Wl

(4)

8~Wl
(2)!2

1
5

24

~Wl
(3)!2

~Wl
(2)!3

.

~24!

The preceding formula is similar to the one in Ref.@13#,
where the authors have expressed the coeffic
C1

T→E(q,q0 ,T0) in terms of derivatives of amplitude and a
tion with respect to energyE. The full expression of
Gl(q,q0 ,E) is then given by

Gl~q,q0 ,E!5
2p

~2p i\!( f 11)/2

1

uWl
(2) detJ1~T0!u1/2

3expF i

\
Sl~q,q0 ,E!2 i

p

2
ñ l G

3$11 i\@C1~q,q0 ,T0!1C1
T→E~q,q0 ,T0!#

1O~\2!%, ~25!

whereSl(q,q0 ,E) is the reduced action and

ñ l5n l if Wl
(2).0,

ñ l5n l11 if Wl
(2),0. ~26!

B. Getting C1
T\E

„q,q0 ,T0… by integrating a set of first order
differential equations

In Sec. II C, we have shown thatC1(q,q0 ,T0) can be
computed by integrating a set of differential equations alo
the classical orbit going fromq0 to q in time T0. In this
section we will show that it is also true forC1

T→E(q,q0 ,T0),
which involves derivatives of bothWl(q,q0 ,T) and
detJ1(T) with respect toT.

For all T, we have the following functional relation (q0
andq being fixed!:

]Wl~q,q0 ,T!

]T
52E~q,q0 ,T!, ~27!

where E(q,q0 ,T) is the energy of the classical trajector
q(t,T), going fromq0 to q in time T, that is, the value of the
HamiltonianH taken at any point on the corresponding pha
space trajectoryX(t,T)5@q(t,T),p(t,T)#.

Writing T5T01dT, the Taylor expansion ofH@X(t,T0
1dT)# is easily deduced from the Taylor expansion
X(t,T01dT) around the reference trajectoryX(t,T0) @noted
hereafter asX(0)(t)#:
05620
nt

g

e

f

X~ t,T01dT!5X(0)~ t !1dT X(1)~ t !1
dT2

2
X(2)~ t !

1
dT3

6
X(3)~ t !1••• ~28!

and from which one obtains the higher derivatives of t
classical actionWl

(n) at T5T0:

Wl
(1)52H@X(0)~ t !#,

Wl
(2)52Xi

(1)Hi
(1) ,

Wl
(3)52~Xi

(2)Hi
(1)1Xi

(1)Xj
(1)Hi j

(2)!,

Wl
(4)52~Xi

(3)Hi
(1)13Xi

(1)Xj
(2)Hi j

(2)1Xi
(1)Xj

(1)Xk
(1)Hi jk

(3)!,

~29!

where all derivatives ofH are evaluated atX(0)(t).
Equations forX(n)(t) are deduced from Hamilton’s equa

tions governingX(t,T) evolution:

Ẋi
(1)5S i j H jk

(2)Xk
(1) ,

Ẋi
(2)5S i j H jk

(2)Xk
(2)1S i j H jkl

(3)Xk
(1)Xl

(1) ,

Ẋi
(3)5S i j H jk

(2)Xk
(3)13S i j H jkl

(3)Xk
(1)Xl

(2)

1S i j H jklm
(4) Xk

(1)Xl
(1)Xm

(1) , ~30!

where again all derivatives ofH are evaluated atX(0)(t).
Thus, we are facing three differential sets of the formẊ( i )

5SH (2)X( i )1SY( i ) ~i.e., nonhomogeneous linear differen
tial equations!, with the important property that the vecto
Y( i ) only depends on vectorsX( j ) with j , i , so that they can
be solved one after the other. Solutions of these nonhomo
neous linear differential equations are expressed with
monodromy matrixM (0):

X(1)~ t !5M (0)~ t !X(1)~0!,

X(2)~ t !5M (0)~ t !X(2)~0!1F(2)~ t !,

X(3)~ t !5M (0)~ t !X(3)~0!1F(3)~ t !. ~31!

Among the 33(2 f )-dimensional space of solutions given b
preceding expressions, the relevant one is selected by tr
posing on initial valuesX( i )(0) ~for i 51,2,3) the two bound-
ary conditions

q~0,T01dT!5q0 and q~T01dT,T01dT!5q. ~32!

Introducing positionq( i ) and momentump( i ) parts for
vectorsX( i ), the Taylor expansion of the preceding equatio
leads to the following boundary conditions:
7-5
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q(1)~0!50 q(1)~T0!52q̇(0)~T0!,

q(2)~0!50 q(2)~T0!52q̈(0)~T0!22q̇(1)~T0!,

q(3)~0!50 and q(3)~T0!52q&(0)~T0!23q̈(1)~T0!23q̇(2)~T0!. ~33!
s
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se,

ce
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1
to
Thus, the initial valuesp( i )(0) are implicitly determined by
the final valuesq( i )(T0), through the integral expression
~31!, which for X(1) reads

S q(1)~T0!

p(1)~T0!
D 5FJ2~T0! J1~T0!

J̇2~T0! J̇1~T0!
G S 0

p(1)~0!
D , ~34!

showing thus thatp(1)(0)52J1
21(T0)q̇(0)(T0).

ThenF(2)(T0) andF(3)(T0) are easily computed by inte
grating sets of differential equations obtained from Eq.~30!,
allowing us to derivep(2)(0) andp(3)(0) values from Eq.
~31!, solving systems similar to Eq.~34!:

p(2)~0!52J1
21~T0!@ q̈(0)~T0!12q̇(1)~T0!1f(2)~T0!#,

p(3)~0!52J1
21~T0![q&(0)~T0!13q̈(1)~T0!

13q̇(2)~T0!1f(3)~T0!],

~35!
where we have introduced the notation (f( i ),g( i )) for vectors
F( i ). Quantities like q̇(1)(T0), q̈(1)(T0), and q̇(2)(T0) can
also be expressed in terms ofX(0)(T0) and its derivatives.

At this point, from the values of the three vectorsX( i )(T0)
and using Eqs.~29! at time T0, all derivativesW(n) of the
classical action can be computed.

We now explain how to compute derivatives of detJ1(T).
More precisely one has to calculate the two coefficientsC0

(1)

andC0
(2) , which are derivatives of2 lnAudetJ1(T)u, so that,

using the well-known formula

d

dT
~ lnudetJu!5TrS J21

dJ

dTD ~36!

@J being any~invertible! matrix#, expressions ofC0
(1) and

C0
(2) become

C0
(1)52

1

2
TrS J1

21~T0!
dJ1~T0!

dT D ,

C0
(2)52

1

2
TrS J1

21~T0!
d2J1~T0!

dT2

2J1
21~T0!

dJ1~T0!

dT
J1

21~T0!
dJ1~T0!

dT D , ~37!

wheredJ1(T0)/dT means derivative ofJ1(T0) when chang-
ing total timeT ~and thus the classical orbit!, which must not
be confused withJ̇1 ~time derivative ofJ1 along a given
classical orbit!. J1(T) being the (f 3 f ) upper right submatrix
of the monodromy matrixM (T), dnJ1(T0)/dTn is also
05620
stored at the same position in matrixdnM (T0)/dTn, for
which we will derive general expressions. For this purpo
we first introduce the explicit notationM (t,T), representing
the value of the monodromy matrix at timet along the orbit
going fromq0 to q in time T. Writing T5T01dT, the Taylor
expansion ofM (t,T) for a given timet reads

M ~ t,T01dT!5M (0)~ t !1dT M(1)~ t !1
dT2

2
M (2)~ t !,

~38!

whereM (0)(t) is the monodromy matrix along the referen
orbit ~i.e., going fromq0 to q in time T0). ThendM(T0)/dT
andd2M (T0)/dT2 are the Taylor coefficients of monodrom
matrix M (T01dT,T01dT) and thus have the following ex
pression:

dM~T0!

dT
5Ṁ (0)~T0!1M (1)~T0!,

d2M ~T0!

dT2
5M̈ (0)~T0!12Ṁ (1)~T0!1M (2)~T0!. ~39!

Equations governingM ( i )(t) evolution are easily deduce
from the one forM (t,T):

Ṁ i j
(1)5S ik@Hkl

(2)Ml j
(1)1Hklm

(3) Xm
(1)Ml j

(0)#,

Ṁ i j
(2)5S ik[Hkl

(2)Ml j
(2)12Hklm

(3) Xm
(1)Ml j

(1)

1Hklm
(3) Xm

(2)Ml j
(0)1Hklmn

(4) Xm
(1)Xn

(1)Ml j
(0)], ~40!

with initial conditions M (1)(0)5M (2)(0)50. Obviously
these equations are similar to those governingX( i ) evolution,
so thatM (1)(T0) and M (2)(T0) values will be obtained by
integrating similar differential sets. Actually, it can be show
that all these sets~for bothX( i ) andM ( i )) can be concatened
in only one~larger! set of differential equations, whose inte
gration can be done at once.

Finally, gathering all quantities in Eq.~39!, the two ma-
tricesdJ1(T0)/dT andd2J1(T0)/dT2 are inserted in Eq.~37!
thus giving values forC0

(1) andC0
(2) , which, along with the

values forWl
(n) , allow us to compute the numerical value fo

C1
T→E(q,q0 ,T0).
Obviously, the number of equations in the preceding d

ferential sets can be reduced, especially for Hamilton
separating into kinetic and potential energy, for whichH jkl

(3)

and H jklm
(4) coefficients are nonvanishing only when

< j ,k,l ,m< f . However, these sets are straightforward
7-6
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implement and need only a small amount of CPU time to
solved using any conventional integrator~fourth order
Runge-Kutta in the present case!.

IV. TRACE OF THE PROPAGATOR K„T…

The diagonal elementsK(q0 ,q0 ,T) of the propagator are
related to classical orbits starting fromq0 and returning to
this point after timeT, i.e., closed orbits. Summing all thes
diagonal elements, that is performing the integ
*dq0 K(q0 ,q0 ,T), will select, through another stationar
phase approximation, closed orbits for which initial and fin
momentum are equal: periodic orbits.\ corrections to lead-
ing order of the semiclassical contribution toK(T) from
each periodic orbit can be derived following the sam
scheme previously used for the propagator itself@1,13#.

A. Feynman path integral

Adding the integral over the initial and final positions
Eq. ~1! yields @13#

K~T!5E dq0 dq1 dq2 , . . . ,dqN21~2p i\Dt !2N f /2

3expF i

\ (
n50

N21

LS qn112qn

Dt
,qnDDt1O~Dt !G

~41!

with qN5q0.
The stationary phase approximation around a given p

odic orbit ql
cl(t) is made explicit when replacing the prece

ing N f integral with @13#

E dq0
i dj0

' dj1 dj2 , . . . ,djN21 ~42!

with jn5qn2ql
cl(nDt). For n50 ~i.e., initial position!, only

deviations perpendicular to the periodic orbitj0
' have been

introduced because the classical actionWl(q0 ,q0 ,T) is con-
stant along the orbit~depicted byq0

i ). The contribution
Kl(T) of this periodic orbit toK(T) then reads@13#

Kl~T!5S N

2p i\TD N f /2

expS i

\
Wl D E dq0

i dj0
' dj1

3dj2 , . . . ,djN21 expS i

2\
W,abjajbD

3F11
i

6\
W,abcjajbjc1

i

24\
W,abcdjajbjcjd

2
1

72\2
W,abcW,de fjajbjcjdjej f G , ~43!

whereja5j0i
' whena5(0,i ) andja50 whena5(0,0). Wl

is, in the largeN limit, the classical action of the periodi
orbit. Full expressions forW,ab , W,abc , andW,abcd can be
found in Ref.@13#.
05620
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Then, the next step would consist of performing all ima
nary Gaussian integrals, leaving out the integral along
orbit. However, in the preceding coordinate transformat
~42!, there is an hidden subtlety, affecting only\ corrections,
which probably explains why it is not mentioned in usu
textbooks@1,3#, where authors are only looking at leadin
semiclassical amplitudes.

Actually, the problem is that the integral overq0
i corre-

sponds to the length of the classical orbit, only whenj0
'50;

for a nonzero value, it will correspond to integration on
closed curve, slightly displaced from the original trajecto
whose length will thus depend on thej0

' value. To enlighten
this, let us suppose that we have a bidimensional system
which one periodic orbit is a circle of radiusR0, traveled at
constant speedV052pR0 /T. The coordinate transformatio
is then easily made using polar coordinates (r ,u):

r 5R02j0
' . ~44!

The negative sign appears to preserve orientation. The
ume elementdx dy becomes

dx dy5rdu dr5~R02j0
'!du dj0

' , ~45!

which shows that, in this case,dq0
i is not simplyR0du, the

length on the periodic orbit, but is given by

dq0
i 5~R02j0

'!duÞR0 du. ~46!

This simple example shows actually that the variableq0
i is

not independent ofj0
' , whereasu is.

For a general system, the variable that can play theu role
is actually the timet, whose variation domain@0,T# is fixed
and then obviously independent ofj0

' . Thus one has to gen

eralize the relationdq0
i 5uq̇cludt0, valid only on the periodic

orbit. This is done by writing explicitly the coordinate tran
formationq→(t0 ,j0

'):

q5qcl~ t0!1j0i
' ni~ t0!, ~47!

whereni(t0) are f 21 orthogonal unit vectors lying in the
plane perpendicular to the periodic orbit at timet0. The Jaco-
bian of the transformation reads

det
]q

]~ t0 ,j0
'!

5det@ q̇cl1j0i
' ṅi ,n1 ,•••,nf 21#

5uq̇clu2
1

uq̇clu
j0

'
•q̈cl. ~48!

Inserting the volume element in Eq.~43!, the contribution
Kl(T) of the periodic orbit now reads, keeping only term
giving rise to\ corrections,
7-7
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Kl~T!5S N

2p i\TD N f /2

expS i

\
Wl D

3E uq̇cludt0 dj0
'dj1dj2 , . . . ,djN21

3expS i

2\
W,abjajbD

3F11
j d̃V,d̃

uq̇clu2
1

i

6\
W,abcjajbjc

1
i

24\
W,abcdjajbjcjd1

i

6\

V,d̃W,abcj d̃jajbjc

uq̇clu2

2
1

72\2
W,abcW,de fjajbjcjdjej f G , ~49!

where we have seen thatq̈cl52]qV and we have introduced
the indexd̃ for (0,j ).

As explained in Ref.@13#, the imaginary Gaussian inte
grals can be expressed in terms of another classical Gre
functionsG(t,t8), whose boundary conditions are extract
when comparing the detailed expression ofW,ab with the
discrete version of the Jacobi-Hill operatorD, see Eq.~6!.
Especially, it can be shown that, in the largeN limit, they
become

G~0,t8!5G~T,t8!,

Pt0
G~0,t8!5Pt0

G~T,t8!50, ; t8P@0,T#, ~50!

Qt0
Ġ~0,t8!5Qt0

Ġ~T,t8!,

where we have introducedPt0
the projector along the peri

odic orbit at timet0 andQt0
512Pt0

. In Ref. @13#, only the

f 21 f boundary conditions corresponding to the first tw
lines were given, whereas thef 22 f ones corresponding to
the last line were missing.

Performing all imaginary Gaussian integrals and tak
the largeN limit in Eq. ~49!, the contribution of the given
periodic orbit to the trace of the propagator reads as follo

Kl~T!5Kl
(0)~T!H 11 i\

1

TE0

T

dt0C1~T,t0!1O~\2!J ,

~51!

Kl
(0)(T) being the usual semiclassical leading order@1,13,22#

Kl
(0)~T!5

1

A2p\

T

u]ET det@m~T!21#u1/2

3expF i

\
Wl~T!2 i

p

2
m l1 i sgn]ETG , ~52!

whereWl(T) is the classical action of the periodic orbit an
m l its Maslov index.
05620
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The first\ correctionC1(T) to Kl
(0)(T) is then obtained

by averaging over the timet0 ~i.e., over the full periodic
orbit! the coefficientC1(T,t0), given by

C1~T,t0!5
1

8E0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !

1
1

2

Vl
(1)~ t0!

uq̇clu2
E

0

T

dt Vi jk
(3)~ t !Glk~0,t !Gi j ~ t,t !

1
1

24E0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!@3Gi j ~ t,t !

3Gkl~ t,t8!Gmn~ t8,t8!

12Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!#, ~53!

wheret0 represents thus the positionq0 on the periodic orbit
at which boundary conditions~50! on the classical Green’s
function G(t,t8) are applied.q0 is also the initial~and final!
position on the periodic orbit for classical motions corr
sponding to timest and t8 entered in the preceding expre
sion.

B. Classical Green’s function

As in Sec. II B, where expressions for classical Gree
functions for the propagatorK(q,q0 ,T) where derived, we
introduce theG6(t,t8) notations andA6(t8), B6(t8) matri-
ces. Using all boundary conditions~at timest5t8, t50 and
t5T) gives rise to the following equation:

F 1 0

0 Qt0
G @M ~T!212 f #S A2~ t8!

B2~ t8!
D

5F 1 0

0 Qt0
GM ~T!S 2J1

Á~ t8!

J2
Á~ t8!

D . ~54!

The preceding set of linear equations, formally writtenA X
5B, cannot be solved directly because the (2f 32 f ) matrix
A is obviously singular. More precisely, existence and nu
ber of solutions for the systemA x5b are determined by the
two following properties:

~1! Solutions exists if for all vectorsy such thatA Áy
50, theny•b50.

~2! If the preceding condition is fulfilled, and ifx is a
solution, then for all vectorsx0 such thatA x050, x1x0 is
also a solution, showing that the dimension of the solut
space is that of the nullspace ofA.

In the present case, equationAÁy50 leads to either

F 1 0

0 Qt0
Gy50⇒y}S 0

q̇~ t0!
D ~55!

or

@M ~T!212 f # ỹ50 with ỹ5SF 1 0

0 Qt0
GyÞ0. ~56!
7-8
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For a generic unstable periodic orbit, the eigenspace ass
ated with the eigenvalue 1 ofM (T) ~T being the period!, is
of dimension one and is spanned by the vector parallel to
flow ~see the Appendix! Ẋ(t0)5@ q̇(t0),ṗ(t0)#, so that, in the
second case, one getsỹ}Ẋ(t0) andy is a solution of

F 1 0

0 Qt0
Gy}S 2ṗ~ t0!

q̇~ t0!
D , ~57!

which is impossible unlessq̇(t0)50, which, for Hamiltonian
separating into kinetic and potential energies, correspond
a self-retracing periodic orbit, for which a slightly modifie
approach should be developed@18#. Nevertheless, this case
peculiar, and we will suppose in the rest of the section thaq̇
never vanishes along the periodic orbit in consideration.

Thus, the nullspace ofA Á being one-dimensional an
spanned by the vector@0,q̇(t0)#, Eq.~54! immediately shows
that for any column of matrixB, we get @0,q̇(t0)#•Bi50,
fulfilling thus the first condition. DenotingX0 as a solution
of Eq. ~54!, which can be easily obtained using singu
value decomposition~SVD! of matrix A, and the nullspace
of M (T)21 being spanned byẊ(t0), the general solution o
Eq. ~54! reads

X5X01@a1Ẋ~ t0!,a2Ẋ~ t0!, . . . ,a fẊ~ t0!#, ~58!

wherea i are unknown real parameters still to be determin
Actually, in Eq. ~54! one boundary condition has not bee
taken into account, namely, thatPt0

G2(0,t8)50 which, us-

ing that the projectorPt0
reads

~Pt0
! i j 5S q̇~ t0!q̇Á~ t0!

uq̇~ t0!u2 D
i j

5
q̇i~ t0!q̇j~ t0!

uq̇~ t0!u2
, ~59!

allows us to geta i values and, from that, the final expressi

S A2~ t8!

B2~ t8!
D 5X02

1

uq̇~ t0!u2 F q̇~ t0!q̇Á~ t0! 0

ṗ~ t0!q̇Á~ t0! 0
GX0 , ~60!

which, of course, is now independent of the particular so
tion X0.

Whereas in the case of the propagatorK(q,q0 ,T), for
which we were able to give an explicit expression~14!, the
classical Green’s function associated with the trace of
propagatorK(T) is only defined trough a linear system~54!,
which nevertheless allows us to obtain its numerical va
for any (t,t8). Although it clearly appears that matrixW,ab
expression~see Ref.@13#! is symmetric, meaning that th
classical Green’s function must fulfill the proper
G Á(t,t8)5G(t8,t), getting the later directly from Eq.~54! is
not obvious. However, in the case of the 2D hydrogen i
magnetic field~see Sec. VI for all details!, we have numeri-
cally checked that the property holds. For example, in Fig
the four coefficients of classical Green’s functionG(t,t8) ~for
t8/T50.3) of the periodic orbit 1234 are plotted with respe
05620
ci-
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to time t. The starting pointt0 on the periodic orbit is de-
picted by the cross. Actually, we have plotted the coeffici

of the rotated matrixG̃(t,t8), such that its first row corre-

sponds to the direction parallel to the orbit;G̃11(t,t8) ~con-

tinuous line! andG̃12(t,t8) ~dotted line! are thus equal to zero
for initial ( t50) and final (t5T) points. The other boundary
conditions can also be verified in the figure: the dashed

@ G̃21(t,t8)# @respectively, the long dashed line,G̃22(t,t8)# has
not only the same value at initial and final time, but also t

same slope, which means thatG̃21(t,t8) @respectively,
G̃22(t,t8)# and its time derivative fulfill the periodic boundar
conditions ~50!. Finally, for t5t8, the off-diagonal coeffi-
cients G̃12(t8,t8) ~dotted line! and G̃21(t8,t8) ~dashed line!
are equal, as expected from the symmetry property.

C. Getting C1„T,t0… by integrating a set of first order
differential equations

As seen previously~see Sec. II C!, we will explain how
the numerical value of coefficientsC1(T,t0) can be obtained

FIG. 2. Example of a classical Green’s functionG(t,t8) in-
volved in the calculation of the\ corrections for the trace of the
propagatorK(T). It is associated with the periodic orbit1234 of the
2D hydrogen atom in a magnetic field, whose trajectory in (u,v)
coordinates is inserted in the plot~see Sec. VI for all details!. The
black circle depicts the nucleus, whereas the cross correspon
the initial and final points on the periodic orbit at whichG(t,t8)
fulfills the boundary conditions~50!. Each curve corresponds to
matrix elementGi j (t,t8) plotted with respect to timet, for t8/T
50.3. Actually, we have plotted the coefficient of the rotated mat

G̃(t,t8), such that its first row corresponds to the direction para

to the orbit; G̃11(t,t8) ~continuous line! and G̃12(t,t8) ~dotted line!
are thus equal to zero for initial (t50) and final (t5T) points. The
other boundary conditions can also be verified in the figure;

dashed line @ G̃21(t,t8)# @respectively, the long dashed line

G̃22(t,t8)# has not only the same value at initial and final time, b

also the same slope, which means thatG̃21(t,t8) @respectively,

G̃22(t,t8)# and its time derivative fulfills the periodic boundary co
ditions ~50!. Finally, for t5t8, the off-diagonal coefficients

G̃12(t8,t8) ~dotted line! and G̃21(t8,t8) ~dashed line! are equal, as
expected from the symmetry propertyG Á(t,t8)5G(t8,t).
7-9



an
n
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by integrating a set of differential equation, using the st
dard Runge-Kutta method. There are now four contributio
to C1(T,t0), namely

I 1~T!5E
0

T

dt Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

I l~T!5E
0

T

dt Vi jk
(3)~ t !Glk~0,t !Gi j ~ t,t !,
f

en

05620
-
s

~61!

I 2
1~T!5E

0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi j ~ t,t !Gkl~ t,t8!Gmn~ t8,t8!,

I 2
2~T!5E

0

TE
0

T

dt dt8 Vi jk
(3)~ t !Vlmn

(3) ~ t8!

3Gi l ~ t,t8!Gjm~ t,t8!Gkn~ t,t8!.
is
g
m

tion of
s, the
The two main difficulties now are thatG(t,t8) does not factorize anymore in a product of matrix at timet and a matrix at time
t8, nor does the symmetric propertyG Á(t,t8)5G(t8,t) explicitly appear~even if we have numerically checked that it
fulfilled!. Nevertheless, as seen previously, separating (t.t8) and (t,t8) contributions inI 2

6(T) expressions and introducin
four quantitiesPp

( i ) for 1< i<4, allows us to computeI 2
1 , by integrating the following set of differential equations fro

t50 to T @besides equations forX(t) andM (t)#:

Ṗp
(1)5Apl

1~ t !Vlmn
(3) ~ t !Gmn~ t,t !, Ṗp

(3)5J1lp~ t !Vlmn
(3) ~ t !Gmn~ t,t !,

Ṗp
(2)5Bpl

1~ t !Vlmn
(3) ~ t !Gmn~ t,t !, Ṗp

(4)5J2lp~ t !Vlmn
(3) ~ t !Gmn~ t,t !,

İ 2
15Vi jk

(3)~ t !Gi j ~ t,t !J2kp~ t !Pp
(1)~ t !1Vi jk

(3)~ t !Gi j ~ t,t !J1kp~ t !Pp
(2)~ t !

1Vi jk
(3)~ t !Gi j ~ t,t !Apk

2 ~ t !Pp
(3)~ t !1Vi jk

(3)~ t !Gi j ~ t,t !Bpk
2 ~ t !Pp

(4)~ t ! ~62!

with vanishing initial conditions forPp
( i ) andI 2

1 . For each time step, one must compute matricesA2 andB2 ~and from there
matricesA1 and B1), solving the linear system described in the previous section, using singular value decomposi
matrix A, which, being independent oft, is done before starting the Runge-Kutta integration. Skipping intermediate step
differential equations leading toI 2

2(T) computation reads as follow, introducing another eight quantitiesQpqr
( i ) :

Q̇pqr
(1) 5Vlmn

(3) ~ t !Apl
1~ t !Aqm

1 ~ t !Arn
1 ~ t !, Q̇pqr

(5) 5Vlmn
(3) ~ t !J2lp~ t !J2mq~ t !J2nr~ t !,

Q̇pqr
(2) 5Vlmn

(3) ~ t !Apl
1~ t !Aqm

1 ~ t !Brn
1 ~ t !, Q̇pqr

(6) 5Vlmn
(3) ~ t !J2lp~ t !J2mq~ t !J1nr~ t !,

Q̇pqr
(3) 5Vlmn

(3) ~ t !Apl
1~ t !Bqm

1 ~ t !Brn
1 ~ t !, Q̇pqr

(7) 5Vlmn
(3) ~ t !J2lp~ t !J1mq~ t !J1nr~ t !,

Q̇pqr
(4) 5Vlmn

(3) ~ t !Bpl
1~ t !Bqm

1 ~ t !Brn
1 ~ t !, Q̇pqr

(8) 5Vlmn
(3) ~ t !J1lp~ t !J1mq~ t !J1nr~ t !,

İ 2
25Vi jk

(3)~ t !J2ip~ t !J2 jq~ t !J2kr~ t !Qpqr
(1) ~ t !13Vi jk

(3)~ t !J2ip~ t !J2 jq~ t !J1kr~ t !Qpqr
(2) ~ t !

13Vi jk
(3)~ t !J2ip~ t !J1 jq~ t !J1kr~ t !Qpqr

(3) ~ t !1Vi jk
(3)~ t !J1ip~ t !J1 jq~ t !J1kr~ t !Qpqr

(4) ~ t !

1Vi jk
(3)~ t !Api

2~ t !Aq j
2 ~ t !Ark

2 ~ t !Qpqr
(5) ~ t !13Vi jk

(3)~ t !Api
2~ t !Aq j

2 ~ t !Brk
2 ~ t !Qpqr

(6) ~ t !

13Vi jk
(3)~ t !Api

2~ t !Bq j
2 ~ t !Brk

2 ~ t !Qpqr
(7) ~ t !1Vi jk

(3)~ t !Bpi
2~ t !Bq j

2 ~ t !Brk
2 ~ t !Qpqr

(8) ~ t ! ~63!
of

al
with vanishing initial conditions forQpqr
( i ) and I 2

2. Finally,
one must add equations leading toI l and I 1 computation,
namely

İ 15Vi jkl
(4) ~ t !Gi j ~ t,t !Gkl~ t,t !,

İ l5Vi jk
(3)~ t !Alk

2~ t !Gi j ~ t,t !, ~64!

where we have usedGlk(0,t)5Alk
2(t). Taking into account

equations forX(t) and M (t), this gives rise to a total o
8 f 314 f 217 f 13 equations, that is 97 for a 2D system.

In practice, having found a periodic orbit and for a giv
t0 along this orbit, the coefficientC1(T,t0) is computed in
two steps:
~1! achieve the SVD decomposition of the matrixA,
appearing on the left-hand side of Eq.~54!, and compute
the projector matrix appearing on the right-hand side
Eq. ~60!;

~2! integrate the differential set~63! along the periodic
orbit ~starting at point depicted byt0). At any timet, use the
preceding SVD decomposition to obtain a solutionX0 and
the projector matrix to get the true solution@A2(t),B2(t)#
and thus@A1(t),B1(t)#, using Eq.~60!.

Finally, the coefficient C1(T,t0), being a smooth
function of t0, the average over timet0, leading to the\
correction termC1(T), can be handled by any convention
integrator.
7-10
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V. TRACE OF THE GREEN’S FUNCTION G„E…

Steps leading to the semiclassical contributionGl(E)
from a given periodic orbit to the trace of the Green’s fun
tion G(E) are identical to those giving theGl(q,q0 ,E) ex-
pression, so thatGl(E) reads

Gl~E!5
1

i\

T0

udet@m~T0!21#u1/2
expF i

\
Sl~E!2 i

p

2
m l G

3$11 i\@C1~T0!1C1
T→E~T0!#1O~\2!%, ~65!

whereC1
T→E(T) is given by

C1
T→E~T0!5

1

2Wl
(2) @~C0

(1)!21C0
(2)#

2
Wl

(3)C0
(1)

2~Wl
(2)!2

2
Wl

(4)

8~Wl
(2)!2

1
5

24

~Wl
(3)!2

~Wl
(2)!3

.

~66!

Wl
( i ) ~respectively,C0

( i )) are the Taylor coefficients of th
Wl(T) @respectively,C0(T)# expansion aroundT0.

Computation ofWl
( i ) is much the same as in the Green

function case, because the functional relation
g
im
f

n
s

-

of
es

t
ra

05620
-

]Wl~T!

]T
52E~T! ~67!

still holds for a given periodic orbit,E(T) being its energy as
function of its period, which is still given by the value of th
HamiltonianH taken at any point on the corresponding pha
space trajectoryX(t,T)5@q(t,T),p(t,T)#. Thus, the Taylor
expansion ofX(t,T) around the periodic orbitX(t,T0), will
lead to the same expressions forWl

( i ) coefficients@Eq. ~29!#
and for X(n)(t) equations@Eq. ~30!#. The only differences
with the preceding section arise from the boundary con
tions fulfilled by X(n)(t), deduced from the equatio
X(0,T)5X(T,T), i.e.,X(t,T) is a periodic orbit of periodT.
The Taylor expansion of this relation leads to the followi
conditions:

X(1)~0!5X(1)~T0!1Ẋ(0)~T0!,

X(2)~0!5X(2)~T0!1Ẍ(0)~T0!12Ẋ(1)~T0!,

X(3)~0!5X(3)~T0!1X& (0)~T0!13Ẍ(1)~T0!13Ẋ(2)~T0!.

~68!
Solutions of the differential set~30! still have the following
formal expressions~31!, which, inserted in the boundar
conditions~68!, leads to equations onX( i )(0) only:
@12M ~T0!#X(1)~0!5Ẋ(0)~T0!,

@12M ~T0!#X(2)~0!5Ẍ(0)~T0!12Ẋ(1)~T0!1F(2)~T0!,

@12M ~T0!#X(3)~0!5X& (0)~T0!13Ẍ(1)~T0!13Ẍ(2)~T0!1F(3)~T0!. ~69!
-

sed
a-
The matrix12M (T0) being singular, solving the precedin
linear equations need additional discussion, which, for s
plicity, will focus on X(1)(0) only. First, the nullspace o
12M (T0)Á is spanned bySẊ(0)(T0), which is obviously
orthogonal toẊ(0)(T0), the right-hand side of the equatio
for X(1)(0), thus showing that this equation admits solution
Then, the nullspace of12M (T0) being spanned byẊ(0)(T0),
the whole set of solutions reads

X(1)~0!5X0
(1)~0!1aẊ(0)~T0!, ~70!

whereX0
(1)(0) is a particular solution of the equation. Actu

ally, the termaẊ(0)(T0) corresponds to a displacement
the initial conditions along the flow, which, of course, giv
back the same periodic orbit~at first order inT2T0). We
thus expect that this term has a vanishing contribution
Wl

(2) , which is easily verified when inserting the gene
solution in theWl

(2) expression~taken at timet5T0):
-

.

o
l

Wl
(2)52@X0

(1)~0!2Ẋ(0)~T0!1aẊ(0)~T0!#•“H@X(0)~T0!#

52X0
(1)~0!•“H@X(0)~T0!# ~71!

because of the Hamilton’s equationsẊ(0)(T0)
5S“H@X(0)(T0)#.

These two properties also hold in the cases ofX(2)(0) and
X(3)(0), but areslightly more complicated to establish be
cause the right-hand sides of the equations involveF( i )(T0)
and derivatives ofX( i )(T0).

Thus, integrating the same differential sets that were u
for G(q,q0 ,E), one is able to compute the first four deriv
tives of the action,Wl

( i ) , with respect to the period.
Starting from theC0

(0)(T) expression

C0
(0)~T!5 ln T2 1

2 lnu]ETu2 1
2 lnudet@m~T!21#u ~72!

and using the fact that]ET51/]TE521/]T
2Wl , one obtains
7-11
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C0
(1)~T0!5

1

T0
1

1

2

Wl
(3)

Wl
(2)

2
1

2

d

dT
lnudet@m~T!21#u,

C0
(2)~T0!52

1

T0
2

1
1

2

Wl
(4)

Wl
(2)

2
1

2 S Wl
(3)

Wl
(2)D 2

2
1

2

d2

dT2
lnudet@m~T!21#u, ~73!

which means that one is left with the calculation of derivatives of lnudet@m(T)21#u with respect to the periodT. As shown in
the Appendix, det@m(T)21# is given by the determinant of the 2f 32 f matrix N(T) defined as follows:

N~T!5M ~T!2@12Pi~T!2P'~T!#, ~74!

where we have introducedPi(T) @respectively,P'(T)# the projector on the direction parallel to the flow~respectively,
perpendicular to the energy shell!, more precisely, thePi(T) andP'(T) expressions are

Pi5ei•ei
Á and P'5e'•e'

Á52SPiS, ~75!

whereei is the unit vector tangent to the flow at initial~and thus final! time ande'5Sei . Now, using again formula~36!,
derivatives of det@m(T)21# with respect to the period read

d

dT
$det@m~T!21#%5TrS N~T0!21

dN~T0!

dT D ,

d2

dT2
$det@m~T!21#%5TrS N21~T0!

d2N~T0!

dT2
2N~T0!21

dN~T0!

dT
N~T0!21

dN~T0!

dT D ~76!

with

dN~T0!

dT
5

dM~T0!

dT
1

dPi~T0!

dT
2S

dPi~T0!

dT
S,

d2N~T0!

dT2
5

d2M ~T0!

dT2
1

d2Pi~T0!

dT2
2S

d2Pi~T0!

dT2
S. ~77!

As seen previously~Sec. III B!, dM(T0)/dT andd2M (T0)/dT2 are expressed in terms of the coefficientsM ( i )(t) of the Taylor
expansion of the monodromy matrixM (t,T) @associated with the periodic orbitX(t,T) of periodT# around the periodic orbi
X(0)(t) of periodT0, see Eq.~39!.

Inserting the Taylor expansion ofẊ(T) aroundT0 in the Pi(T) expression, namely,

Pi~T!5
1

iẊ~T!i2
Ẋ~T!•Ẋ~T!Á, ~78!

one obtains the derivatives ofPi(T) with respect toT:

dPi~T0!

dT
5

1

iẊ(0)i2
~Ẋ(1)

•Ẋ(0)Á
1Ẋ(0)

•Ẋ(1)Á
!22

Ẋ(0)Á
•Ẋ(1)

iẊ(0)i2
Pi~T0!,

d2Pi~T0!

dT2
5

1

iẊ(0)i2
~Ẋ(2)

•Ẋ(0)Á
1Ẋ(0)

•Ẋ(2)Á
12Ẋ(1)

•Ẋ(1)Á
!1S 8

~Ẋ(0)Á
•Ẋ(1)!2

iẊ(0)i4
22

Ẋ(0)Á
•Ẋ(2)

iẊ(0)i2
22

Ẋ(1)Á
•Ẋ(1)

iẊ(0)i2 DPi~T0!

24
Ẋ(0)Á

•Ẋ(1)

iẊ(0)i4
~Ẋ(1)

•Ẋ(0)Á
1Ẋ(0)

•Ẋ(1)Á
!,
~79!
056207-12



te
a

w
e

b
th
u

us
ag
an

ls
fo
er
n

a

, i

-
gy

al
sing
f

d

to

l

ob-
-

the
ap-

a-

ith

\ CORRECTIONS IN SEMICLASSICAL FORMULAS FOR . . . PHYSICAL REVIEW E 65 056207
where allẊ( i ) are evaluated at timet50.
Gathering the preceding expressions into Eq.~76! allows

us to compute ln det@m(T)21# derivatives, which, inserted
together with derivatives of the action, in Eq.~73! gives the
numerical values forC0

(1)(T0) and C0
(2)(T0), which finally

leads to the additional\ correctionC1
T→E(T0).

VI. APPLICATION TO THE 2D HYDROGEN ATOM
IN A MAGNETIC FIELD

The hydrogen atom is one example of a quantum sys
whose classical counterpart depicts a chaotic behavior
has been widely studied~see, e.g., Ref.@4# for a complete
review!. It has now become a very useful tool for testing ne
ideas and tools in the quantum chaos area, both on the s
classical@20,23# or universality @24# points of view, espe-
cially because computing very highly excited states has
come a standard task on a regular workstation, allowing
semiclassical regime to be reached easily. Even if one wo
have preferred to work with the real hydrogen atom~i.e., the
three-dimensional one!, in this paper we will focus on the
two dimensional hydrogen atom in a magnetic field, beca
taking into account invariance by rotation around the m
netic field, gives rise to centrifugal terms in the Hamiltoni
~typically L2\2/2r 2) which would also contribute to\ cor-
rections and would need a study on its own. One must a
notice that, even if the classical dynamics are identical
both cases, the fact that the magnetic field axis is no long
rotation axis in the 2D case gives rise to slight modificatio
in the Maslov indices@18,23,25#.

A. Quantum and Classical Properties

In atomic units the Hamiltonian of the 2D hydrogen in
magnetic field reads

H5
1

2
p22

1

Ax21y2
1

1

8
g2y2, ~80!

whereg5B/B0, with B052.353105T. The classical coun-
terpart of this Hamiltonian has a scaling property, that is
we define new variables by

r̃5g2/3r ,

p̃5g21/3p,

t̃ 5gt, ~81!

we obtain a new HamiltonianH̃ given by

H̃5g22/3H5
p̃2

2
2

1

Ax̃21 ỹ2
1

ỹ2

8
, ~82!

which does not depend ong anymore. The classical dynam
ics of this Hamiltonian is entirely fixed by the scaled ener
e given by

e5g22/3E. ~83!
05620
m
nd

mi-
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e
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f

All properties of the classical trajectories of the origin
Hamiltonian can be deduced from the scaled dynamics u
the scaling transformation~81!. From the quantum point o
view, this scaling introduces an effective\ value, which is
easily seen on the scaled Schro¨dinger equation,H̃c5ec, for
a fixed scaled energye:

F2
g2/3

2
D r̃2

1

Ax̃21 ỹ2
1

ỹ2

8 Gc5ec. ~84!

Thus, the effective\ is given byg1/3 and so at a fixed value
of the scaled energye, the semiclassical limit is obtaine
wheng tends to 0.

The singularity in the classical equations of motion due
the divergence of the Coulomb potential atr50 is regular-

ized using the semiparabolic coordinates (u5Ar̃ 1 x̃,v
5Ar̃ 2 x̃), giving rise to the following effective classica
Hamiltonian@4,26#:

H5 1
2 pu

21 1
2 pv

22e~u21v2!1 1
8 u2v2~u21v2!, ~85!

the trajectories corresponding to the original problem are
tained when fixing total energyH52. The associated quan
tum Hamiltonian reads

Ĥ~\!52
\2

2 S ]2

]u2
1

]2

]v2D
2e~u21v2!1

1

8
u2v2~u21v2!, ~86!

which separates into kinetic and potential energy, so that
semiclassical formula derived in the preceding sections
plied to the associated quantum Green’s functionG(z,\), the
hydrogen in a magnetic field being recovered forz52 ~ac-
tually z/2 corresponds to the nucleus charge!

G~z,\!5
1

z2Ĥ~\!
5(

t

ut,\&^t,\u
z2lt~\!

, ~87!

whereut,\& is an ~normalized! eigenvector ofĤ(\) for the
eigenenergylt(\), t representing the set of quantum l
bels, i.e., level number and symmetry properties~see below!,
describingut,\&. The matrix element̂quG(z,\)uq0&, where
q5(u,v) then reads

^quG~z,\!uq0&5(
t

ct,\~q!ct,\~q0!
1

z2lt~\!
, ~88!

wherect,\(q)5^qut,\& has been supposed to be real, w
Ĥ(\) being invariant underp→2p. Takingz5l on the real
axis, the imaginary part of̂quG(z,\)uq0&, becomes

2
1

p
Im^quG~l,\!uq0&5(

t
ct,\~q!ct,\~q0!d@l2lt~\!#

~89!
7-13
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to which any classical path going fromq to q0 at energyl,
gives the following contribution@see Eq.~25!#:

2
1

p
Im^quG~l,\!uq0& l5

2

~2p\!3/2
Al H cosS 1

\
Sl1f l D

2\Cl sinS 1

\
Sl1f l D J ~90!

provided it is far enough from any bifurcation and thatq and
q0 are not conjugate points for this trajectory. Amplitud
and phases being defined by

Al5
1

uWl
(2) detJ1~T0!u1/2

,

Sl5S~q,q0 ,l!,

f l52
p

2 S ñ l1
1

2D ,

Cl5C1~q,q0 ,T0!1C1
T→E~q,q0 ,T0!. ~91!

Neglecting\ corrections in Eq.~90!, the Fourier trans-
form with respect to the variablez51/\ of the following
function:

g0~z!5
~2p!3/2

2z3/2
32

1

p
Im^quG~l,z!uq0&

5
~2p!3/2

2 (
t

ct,z~q!ct,z~q0!z23/2d@l2lt~z!#

~92!

will depict peaks at the classical actionsSl /2p, with complex
amplitudeAl expifl/2, which has been extensively used
compare the exact quantum Green’s function with its se
classical estimation at the leading order in\. In the same
way, the Fourier transform of the following function:

g1~z!52
~2p!3/2

2 (
t

ct,z~q!ct,z~q0!z21/2

3d@l2lt~z!#2z(
l

Al cos~zSl1f l ! ~93!

will also depict peaks at the classical actionsSl /2p, whose
complex amplitude, given by

1

2i
AlCl expif l ~94!

allows us to extract the numerical value of the\ correction
Cl .

The energyl being fixed, thed@l2lt(z)# function se-
lects the valueszt(l) of z for which l is an eigenvalue,
transforming Eqs.~92! and ~93! into
05620
i-

g0~z!5
~2p!3/2

4 (
t

ct,z~q!ct,z~q0!

^t,zup2/2ut,z&
z3/2d@z2zt~l!#,

g1~z!52
~2p!3/2

4 (
t

ct,z~q!ct,z~q0!

^t,zup2/2ut,z&

3z5/2d@z2zt~l!#2z(
l

Al cos~zSl1f l !.

~95!

Moving to the case of the trace of the Green’s functio
the preceding relations~89! and ~90! become

2
1

p
Im Tr G~l,\!5(

t
d@l2lt~\!# ~96!

and, see Eq.~65!:

2
1

p
Im Tr G~l,\! l52

1

p\
A l

trH cosS 1

\
Sl

tr1f l
trD

2\C l
tr sinS 1

\
Sl

tr1f l
trD J , ~97!

whereSl
tr is the action of the periodic orbit and

A l
tr5

T0

udet@m~T0!21#u1/2
,

f l
tr52

p

2
m l ,

C l
tr5C1~T0!1C1

T→E~T0!, ~98!

so that the classical quantitiesSl
tr , A l

tr , and the\ correction
C l

tr can be obtained by taking the Fourier transform of t
following expressions with respect to the variablez:

g0
tr~z!5

p

2 (
t

1

^t,zup2/2ut,z&
z2d@z2zt~l!#,

g1
tr~z!52

p

2 (
t

1

^t,zup2/2ut,z&
z3d@z2zt~l!#

2z(
l

A l
tr cos~zSl

tr1f l
tr!. ~99!

B. Computing quantum quantities

Focusing on thel52 value, the 2D hydrogen in a mag
netic field case, one has to find effective\ values for which
2 is an eigenvalue of the Schro¨dinger equation
Ĥ(\)c(u,v)52c(u,v), which is conveniently written as
follows:
7-14
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F21e~u21v2!2
1

8
u2v2~u21v2!Gc~u,v !

5\2F2
1

2 S ]2

]u2
1

]2

]v2D Gc~u,v ! ~100!

such thats5\2 appears to be a solution of a generaliz
eigenvalue problem (A2sB)c50, with

A521e~u21v2!2
1

8
u2v2~u21v2!,

B52
1

2 S ]2

]u2
1

]2

]v2D . ~101!

The preceding operatorsA, B, and thusĤ(\) are invariant
under all transformations belonging to the symmetry gro
C4v , leading to four nondegenerate series of energy lev
labeled EEE, EEO, OOE, and OOO according to Ref.@27#
and a twofold degenerate series EO and OE, where E m
even and O means odd, the first two letters referring to
u→2u and v→2v symmetries, the third letter tou↔v.
Actually, because of the definition of the semiparabolic c
ordinates (u,v), only eigenvectors invariant under the pari
symmetryc(2u,2v)5c(u,v) correspond to eigenvector
of the 2D hydrogen in magnetic field, allowing us, in pri
ciple, to drop the OE and EO series@4,26#. However, from
the semiclassical point of view, one would have to extend
preceding sections to symmetry-projected propagator
o
d

ak

w
n

ll

05620
p
s,

ns
e

-

ll
d

Green’s function@28#, and thus to take into account symm
try properties of the classical Green’s function, which is b
yond the scope of this paper. For this reason, we also inc
the OE and EO series in the remainder of this paper.

Finally, eigenvalues and eigenvectors are obtained
solving the matrix representation of the generalized eig
value problem (A2sB)c50 in sturmian bases~one for
each symmetry class! @4#, using the Lanczos algorithm. Typi
cally, we have computed effective\ values ranging from 0
to 124, which for scaled energye520.1 corresponds to
roughly 61 000 eigenvalues in total. One must notice that

generalized eigenvectorsut,\̃&, for a fixed\ value, are ac-
tually orthogonal for the scalar product defined by opera
B5p2/2:

^t,\̃u
p2

2
ut8,\̃ &5dtt8 ~102!

so that theut,\̃& and ut,\& relations read

ut,\&5
1

A^t,\̃ut,\̃&
ut,\̃ &,

ut,\̃&5
1

A^t,\uBut,\&
ut,\&, ~103!

giving rise to g0,1(z) ~95! and g0,1
tr (z) ~99! expressions in

terms of the computed eigenvectors:
g0~z!5
~2p!3/2

4 (
t

c̃t,z~q!c̃t,z~q0!z3/2d@z2zt~2!#,

g1~z!52
~2p!3/2

4 (
t

c̃t,z~q!c̃t,z~q0!z5/2d@z2zt~2!#2z(
l

Al cos~zSl1f l !,

g0
tr~z!5

p

2 (
t

^t,z̃ ut,z̃& z2d@z2zt~2!#,

g1
tr~z!52

p

2 (
t

^t,z̃u t,z̃& z3d@z2zt~2!#2z(
l

A l
tr cos~zSl

tr1f l
tr!. ~104!
ed
ec-
tal

ains
As explained previously, the Fourier transform of the tw
functionsg1 andg1

tr will depict peaks at classical actions an
\ corrections are obtained from the amplitude of these pe
However, in the case of signal given byc(t)
5(an exp(ivnt), it is now well known that the harmonic
inversion method is very well suited and is much more po
erful than the conventional Fourier transform to extract u
known frequenciesvn and amplitudesan @20#. In our case
the signals are the two functionsg1(z) andg1

tr(z), which are
of the form( lAlCl sin(zSl1fl) besides contributions from a
other types of orbits~ghost, continuous family, etc.!.
s.

-
-

C. \ corrections for G„q,q0,2…

Orbits having initial and final points at the nucleus~i.e.,
q5q050) are of special interest because they are involv
in semiclassical estimation of the photoionization cross s
tion @25,29#, which can be directly compared to experimen
results @30,31#. Even if the full \ expansion of the cross
section does not reduce toG(0,0,2) contributions, all closed
orbits are well known and classified, so that this case rem
a nice example of\ corrections forG(q,q0,2).

The Fourier transforms of both functionsg0(z) ~upper
plot, solid line! andg1(z) ~lower plot, solid line!, for scaled
7-15
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BENOÎT GRÉMAUD PHYSICAL REVIEW E 65 056207
energy e520.1, are displayed in Fig. 3. More precisel
g0(z), and g1(z) being known only on a finite interva
@0,zmax#, we have plotted the modulus of their windowe
Fourier transforms, defined as follows:

F0~s!5
6

~zmax!
3E0

zmax
dz z~zmax2z!g0~z!e2 i2psz,

F1~s!5
6

~zmax!
3E0

zmax
dz z~zmax2z!g1~z!e2 i2psz.

~105!

As expected, they depict peaks at the classical action
closed orbits, whose trajectories in (u,v) plane have been
inserted in the figure, the black circle corresponding to
nucleus position. In the figure, the dotted lines correspo
to the semiclassical estimations of the same functions u
the classical properties given by Table I. The closed or
being either half of a periodic orbit or a periodic orbit, w
label a given close orbit with the four-disk code of the co
responding periodic orbit@32,33#.

For the leading order in\ ~upper plot!, as expected, the
agreement between the quantum results and the semiclas
estimation is excellent. For the first order\ correction, the
agreement is very good, but one can notice that there

FIG. 3. Modulus of the windowed Fourier transformsF0 ~solid
line, upper plot! andF1 ~solid line, lower plot!, see Eq.~105!, of the
quantum functionsg0 ~leading order in\) and g1 ~first order \
correction!, see Eq.~104!, associated with the quantum Green fun
tion G(q,q0,2) in the case of the 2D hydrogen atom in a magne
field and for q5q050 ~see Sec. VI for all details!. As expected
from semiclassical formula~25!, peaks are appearing at action~i.e.,
*p dq/2p) corresponding to classical orbits having initial and fin
positions at the nucleus. For the first five ones, the trajectory in
(u,v) plane are also plotted, the nucleus being depicted by
black circle. The agreement with the semiclassical estimation
these functions~dotted lines! is excellent, even if discrepancies i
the amplitude of last two peaks in the lower plot can be observ
These are actually a manifestation of limitation of the Fourier tra
form and not inaccurate calculations of the\ corrections, as it is
emphasized by the quantitative comparison~using harmonic inver-
sion! displayed by Table II.
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discrepancy for the amplitude of the last two peaks. This
not due to errors or inaccurate calculations in the semic
sical estimation, but rather a manifestation of the limitatio
of the Fourier transform. To emphasize this point, we ha
used the harmonic inversion to extract, for each of th
orbits, the\ correction coefficientsC l

HI , from the quantum
function g1(z). The results are compared to the classi
calculationCl in Table II. The agreement is excellent, th
relative error on the amplitude being lower than 1022. As
usual, the phase extracted using harmonic inversion, b
the most sensitive quantity, the agreement on the sign of
Cl , rather nice for the first four orbits, decreases rapid
Finally, one must mention that this good agreement betw
quantum and semiclassical calculations has also been fo
when considering quantum Green’s functionsG(q,q0,2)
with other initial or final points.

D. \ corrections for Tr G„q,q,2…

Still working at scaled energye520.1, Fig. 4 depicts the
modulus of the windowed Fourier transforms ofg0

tr(z) and
g1

tr(z), F0
tr ~upper plot, solid line!, andF1

tr ~lower plot, solid
line!, defined, as previously, as follows:

F0
tr~s!5

6

~zmax!
3E0

zmax
dz z~zmax2z!g0

tr~z!e2 i2psz,

F1
tr~s!5

6

~zmax!
3E0

zmax
dz z~zmax2z!g1

tr~z!e2 i2psz.

~106!

c

l
e
e

of

d.
-

FIG. 4. Modulus of the windowed Fourier transformsF0
tr ~solid

line, upper plot! andF1
tr ~solid line, lower plot!, see Eq.~106!, of the

quantum functionsg0
tr ~leading order in\) and g1

tr ~first order \
correction!, see Eq.~104!, associated with the trace of the quantu
Green’s function TrG(q,q,2) in the case of the 2D hydrogen ato
in a magnetic field~see Sec. VI for all details!. As expected from
semiclassical formula~65!, peaks are appearing at action~i.e.,
rp dq/2p) corresponding to classical periodic orbits, whose traj
tories in the (u,v) plane are plotted~the nucleus being depicted b
the black circle!. The agreement with the semiclassical estimat
~dotted lines! is excellent, as it is emphasized by the quantitat
comparison~using harmonic inversion! displayed by Table IV.
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The trajectories in the (u,v) plane associated with the pea
are also plotted in the figure. The classical properties of
corresponding periodic orbits are displayed by Table
Again the agreement is excellent between the quantum
sults ~solid lines! and the semiclassical estimation~dotted
lines!. The quantitative comparison between the classical
efficientsC l

tr and the valuesC l
HI extracted from the quantum

functiongtr(z) is given in Table IV. The agreement is exce
lent for the amplitude of the coefficients and is rather go
for their phases, which emphasized the validity of the se
classical formula developed in the preceding sections, e

TABLE I. Classical properties of closed orbits involved in th
semiclassical expansion of the quantum Green’s functionG(q,q0,2)
of the 2D hydrogen atom in a magnetic field, for the caseq5q0

50. Because each closed orbit corresponds either to a half-per
orbit or a periodic orbit, we have labeled them with the four-d
code of the corresponding periodic orbit@32,33#. Their trajectories
in the (u,v) plane are shown in Fig. 3.Sl is the reduced action~i.e.,
*p dq/2p), Tl is the period,Al is the leading semiclassical ampl

tude,ñ l is the Maslov index,Cl is the first order\ correction, given
by the sumC1(0,0,Tl)1C1

T→E(0,0,Tl), see Eq.~91!.

Code Sl Tl Al ñ l

13 1.094 570 5 2.425 093 3 0.295 342 6

1243 1.564 998 2 3.600 137 4 0.152 365 0

121343 1.791 060 7 4.286 257 7 0.109 503 9

12124343 1.933 522 1 4.796 775 8 0.093 368 7

1212134343 2.031 948 2 5.214 323 3 0.086 142 0

Code C1(0,0,Tl) C1
T→E(0,0,Tl) Cl

13 20.202 769 9 0.016 539 4 20.186 230 5

1243 20.119 409 3 0.019 741 2 20.099 668 1

121343 20.148 282 2 0.041 175 5 20.107 106 7

12124343 20.172 990 6 0.071 748 0 20.101 242 7

1212134343 20.192 904 3 0.117 464 5 20.075 439 8

TABLE II. Numerical comparison between the theoretical\
correctionsCl for the quantum Green’s functionG(q,q0,2) of the
2D hydrogen atom in a magnetic field, for the caseq5q050 and
the numerical coefficientsC l

HI extracted from exact quantum func
tion g1(z) @Eq. ~104!# using harmonic inversion~taking into ac-
count multiplicity!. The agreement is excellent for the amplitud
and rather nice on the phases, thus emphasizing the validity o
present theory. That the agreement becomes less good for th
orbit only shows the limitations of the harmonic inversion metho
which usually appear on the phase.

Code Cl uC l
HI u Rel. error argCl

HI

13 20.186 230 5 0.1864 '831024 1.0023p

1243 20.099 668 1 0.0995 '231023 1.013p

121343 20.107 106 7 0.1072 '931024 1.023p

12124343 20.101 242 7 0.1016 '431023 1.043p

1212134343 20.075 439 8 0.0761 '931023 1.143p
05620
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cially the additional term arising from the Jacobian descr
ing the change from the Cartesian to local~along the periodic
orbit! coordinates@see Eq.~48!# and which contributes to a
large part of the\ correction for the present orbits.

VII. CONCLUSION

In summary, we have explained in this paper how to
fectively compute\ corrections in the semiclassical expa
sions of the propagatorK(q,q0 ,T), its traceK(T), the quan-
tum Green’s functionG(q,q0 ,E) and its traceG(E) for
chaotic systems with smooth potential. The method is ba
on the classical Green’s functions associated to the rele
trajectories, that is either going fromq to q0 in the propaga-
tor case or periodic orbits forK(T), together with adapted
boundary conditions. We have shown how all quantities c
be obtained by integrating, using the standard Runge-K
method, sets of differential equations. We have also sho

ic

he
last
,

TABLE III. Classical properties of periodic orbits involved i
the semiclassical expansion of the trace of the quantum Gre
function TrG(q,q,2) of the 2D hydrogen atom in a magnetic fiel
Their trajectories in the (u,v) plane are shown in Fig. 4.Sl

tr is the
reduced action~i.e., rp dq/2p), Tl is the period,A l

tr is the leading
semiclassical amplitude,m l is the Maslov index,C l

tr is the first order
\ correction, given by the sumC1(Tl)1C1

T→E(Tl), see Eq.~98!.

Code Sl
tr Tl

tr A l
tr m l

1234 2.709 851 3 6.204 155 6 0.827 881 4 4

1243 3.129 996 4 7.200 274 7 0.616 496 8 4

12434 3.227 168 1 7.541 640 6 0.548 479 1 5

123434 3.272 238 1 7.748 406 8 0.555 880 6 6

Code C1(Tl) C1
T→E(Tl) C l

tr

1234 20.622 577 0.026 912 20.595 665

1243 0.166 821 0.051 665 0.218 486

12434 20.203 536 0.058 541 20.144 995

123434 21.417 05 0.072 41 21.344 64

TABLE IV. Numerical comparison between the theoretical\
corrections C l

tr for the trace of the quantum Green’s functio
Tr G(q,q,2) of the 2D hydrogen atom in a magnetic field and t
numerical coefficientsC l

HI extracted from exact quantum functio
g1

tr(z) @Eq. ~104!# using harmonic inversion~taking into account
multiplicity!. The agreement is excellent for the amplitudes a
rather nice on the phases, thus emphasizing the validity of
present theory, especially the additional term due to the transfor
tion from the Cartesian coordinates to the local frame along
periodic orbit@see Eq.~48!#.

Code C l
tr uC l

HI u Rel. Error argC l
HI

1234 20.595 665 0.5958 '231024 1.0053p

1243 0.218 486 0.2178 '331023 0.043p

12434 20.144 995 0.147 '131022 0.933p

123434 21.344 64 1.347 '231023 0.983p
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that in the derivation of the semiclassical expansion forK(T)
@and thusG(E)#, starting from the Feynman path integra
one must take into account additional terms, which aff
only \ correction coefficients. This is emphasized by t
excellent agreement observed when comparing, in the
of the 2D hydrogen atom in a magnetic field, our theoreti
results with the numerical coefficients extracted from ex
quantum data, using the harmonic inversion. Obviou
there are still many points to be developed. Besides the
cases, such as self-retracing orbits or continuous familie
orbits, needing specific extensions, it would be very intere
ing to understand how to include continuous and discr
symmetries. Also, going into the extended phase sp
(q,t,p,2E) @22#, it would be possible to get a better unde
standing of similarities observed between the differential s
leading, on one side to the\ corrections for the propagato
and its trace and, on the other side to the additional te
arising in the\ corrections for the quantum Green’s functio
and its trace.
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APPENDIX: FEW PROPERTIES OF M „T…

In this Appendix, we consider an isolated unstable pe
odic orbit of periodT. We shall use the notationsei ande'

for the units vectors, which are, respectively, parallel to
flow and perpendicular to the energy shell at the initial po
From Hamilton’s equations, we have thatM (T)•ei5ei , i.e.,
ei is an eigenvector of the matrixM (T) for the eigenvalue 1.
The symplectic equation fulfilled byM (T), namely,
M (T)Á

•S•M (T)5S, implies that, if ei and ej are two
eigenvectors for the eigenvaluesl i and l j , we have the
following properties:

M ~T!Á
•~Sei !5

1

l i
~Sei !,

~l il j21!ei
ÁSej50, ~A1!

showing thus that 1/l i is an eigenvalue ofM (T)Á and, from
that, ofM (T). In addition,M (T) being a real matrix,l̄ j and
1/l̄ j are also eigenvalues ofM (T), so that the nontrivial
eigenvalues~i.e., Þ1) either fall in the (l,1/l) pair or in
quadruplet (l,1/l,l̄,1/l̄).

In the case ofei5ei , the two preceding equations~A1!
imply thate' is an eigenvector ofM (T)Á @but not necessar
ily of M (T)# for the eigenvalue 1 and that for everyl j
Þ1, ej is an orthogonal to e' . In the basis
(ei ,e' ,e1 , . . . ,e2 f 22), M (T) entries then read
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M ~T!53
1 a i 0 0 ••• 0

0 1 0 0 ••• 0

0 a1 l1 0 ••• 0

0 a2 0 l2 ••• 0

A A A A � A

0 a2 f 22 0 0 ••• l2 f 22

4 , ~A2!

where we have supposed that all eigenvalues are simple
degenerated eigenvalues,M (T) would be block diagonal.
For a generic periodic orbit,a i and a i are nonvanishing
emphasizing thus thate' is not an eigenvector ofM (T).
Introducing the vectorẽ' defined as follows:

ẽ'5e'1 (
j 51

2 f 22

b jej with b j5
a j

12l j
~A3!

one immediately gets that

M ~T!ẽ'5ẽ'1a iei . ~A4!

In the casea i50, we have thus found another eigenvec
for the eigenvalue 1, which means that a small displacem
of initial conditions in theẽ' direction leads to another pe
riodic motion with the same periodT, and thus that the pe
riodic orbit is actually embedded in a continuous family. I
deed, using notations from Sec. V, one can show that

X(1)~0!52
iẊi
a i

ẽ' ~A5!

so that we have

a i5iẊi2]ET. ~A6!

In Sec. V, one needs to compute derivatives with resp
to the periodT of det@m(T)21#, whose expression in term
of the nontrivial eigenvalues of the monodromy matrix rea

det@m~T!21#5 )
j 51

2 f 22

~l j21!. ~A7!

IntroducingPi andP' the projectors on the directionsei and
e' , more precisely,

Pi5ei•ei
Á and P'5e'•e'

Á ~A8!

ones defines the matrixN(T) as follows:

N~T!5M ~T!2~12Pi2P'!. ~A9!

In the basis (ei ,e' ,e1 , . . . ,e2 f 22), using orthogonality
betweene' andej , entries ofN(T) read
7-18
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N~T!53
1 a i g1 g2 ••• g2 f 22

0 1 0 0 ••• 0

0 a1 l121 0 ••• 0

0 a2 0 l221 ••• 0

A A A A � A

0 a2 f 22 0 0 ••• l2 f 2221

4 ,

~A10!

whereg j5ei
Á
•ej , which actually could be related to thea j ,
cs

e

. B

. E

05620
but this is not necessary in our case. This shows that
determinant ofN(T) is exactly) j 51

2 f 22(l j21). The main ad-
vantage of the matrixN(T) is that its expression~A9! does
not involve the eigenvectors or the eigenvalues ofM (T), so
that its determinant can be directly computed, without
diagonalization stage required when getting det@m(T)21#
through the eigenvaluesl j . Furthermore, derivatives o
ln detN(T) with respect to the periodT are also straightfor-

ward to obtain, knowing derivatives ofM (T) and of Ẋ(T),
whereas derivatives ofl j would require the knowledge o
those of the eigenvectorsej .
tt.
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