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The validity of semiclassical expansions in the powetkofor the quantum Green’s function have been
extensively tested for billiards systems, but in the case of chaotic dynamics with smooth potential, even if
formulas are existing, a quantitative comparison is still missing. In this paper, extending the theory developed
by Gasparcet al.[Adv. Chem. Phys90, 105(1995], based on the classical Green’s functions, we present an
efficient method allowing the calculation &f corrections for the propagator, the quantum Green’s function,
and their traces. In particular, we show that the previously published expressidnsdaiections to the traces
are incomplete.
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[. INTRODUCTION From a numerical point of view, all quantities involved in
the calculation of thé corrections for a given classical path
Gutzwiller's work has now become a milestone in thecan be obtained as solutions of sets of first order differential
understanding of the properties of a quantum system Whos%quations to_be integrated along this path using standard time
classical counterpart depicts chaotic dynaniit Starting  integrators like the Runge-Kutta method. The number of
from Feynman’s path formulation of quantum mechanics, héguations in these sets can be quite large and can be probably

has been able to complete the early studies of Van Viggk reduced with a deeper_analysis of their structures, in the
deriving expressions for the semiclassical propagator, an ame way that the amplitude in the Gutzwiller trace formula

from this, for the quantum level density: the well-known c’r;?nmg'n?'rgen;%naggr.S?ggrﬂ;‘m;’e ﬁglt:'r?]%(:]gé’r:)%e'
Gutzwiller trace formula. The latter is an asymptotic series indrating onty (2¢2) matrix and not W iromy
% and can be separated into two parts; the leading ord matrix[18]. However, it would give rise to more complicated

. xpressions and probably to additional difficulties in the nu-
corresponds to the Thomas-Ferrfur extended Thomas- merical implementation, whereas the expressions given in

Fermi when including corrections average density of he naper can be put in the computer as they stand. Also, the
states[3]; the other part corres_ponds to the_ OS_C|IIat|onsamoum of CPU time and the memory needed by the codes
around the preceding term and involves contributions fromyre small enough, so that, on a first stage, the reduction of the
all periodic orbits of the system. This formula has been,ymper of equations can be skipped.
widely used to obtain approximate values for the quantum  The paper is divided as follows. In Sec. Il, expressions for
energy eigenvalues of classically chaotic systems: the hydrane classical Green’s functions involved in thecorrection
gen atom in magnetic fielgd,5], the helium aton{6—8|, g the semiclassical propagaté(q,qo, T) are derived. Then,
anisotropic Kepler problenil], resonant tunnel diodf9],  \ye explain how to get a numerical implementation of these
billiards [10-13, etc. Since then, the Gutzwiller trace for- formulas allowing an efficient computation of thecorrec-
mula has also been generalized to take into account contrijo In Sec. IIl. we develop a numerical method to get the
butip.ns of othgr _kinds:_ diffractive eﬁecI[SL4],.continuous additional terms, arising from the time to energy domain
families of periodic orbit413,15,1§, ghost orbits, etc. transformation, in% correction for the quantum Green’s
At the same time, _because the fcrace formula as de”"ed_bﬁbnctionG(q,qO,T). In the case of the trace of the propaga-
Gutzwiller only contained the leading term of the asymptoticy, essential steps for the derivation of thesorrection are
expansion of the quantum level density, the systematic exgegcribed in Sec. IV, leading to the proper formulas, along
pansion of the semiclassical propagator in poweré ¢fas  \,ith the way they can be computed. The time to energy
been the purpose of several stud{d®,13,17. However, anstormation is explained in Sec. V, leading to theor-
these corrections to the trace formula have only been testgd (o expression in the case of the quantum Green's func-
for bl|||a!‘dS, for which both classical and quantum propertiesyjop, Finally, Sec. VI shows how to apply theoretical expres-
are easier to calculate. In the present paper, we will showjong gptained in the four preceding sections in the case of

how, for quantum systems whose Hamiltonian separates inte o hydrogen in magnetic field and emphasizes the excel-
kinetic and smooth potential energigs,corrections can be |gnt agreement with numerical coefficients extracted from

computed with great accuracy, extending the method desyact  quantum calculation, using harmonic inversion
scribed in Refs[12,13, based on classical Green'’s func- 19-21.

tions. In particular, we will show that the previous derivation
[12,13 of the correction to Gutzwiller trace formula is par- Il. THE PROPAGATOR K(q,qo,T)
tially wrong. )
A. Feynman path integral
The starting point is the Feynman path integral, whose
*Electronic address: Benoit.Gremaud@spectro.jussieu.fr discrete version, for a time independent Hamiltonian which
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separates into kinetic and potential energi¢s=p%/2 > 92V
5 D=——l-——[q%(1)]. (6)
+V(q), reads as follow$13]: di2 9999
K(9,90 T):f dadgs,, . . . day_,(2mihAL) N2 Furthermore, the fact that both initial and final point are fixed
Y B in the propagatoK(q,qo,T) imposes the following bound-
. N-1 ary conditions on the classical Green’s funct{di3]:
I On+1—0n
Xexp + 2 L T,qn At+O(At) |,
" G(0t')=G(T,t')=0 V¥t [0T]. @)
D
where At=T/N, gy=0q, and L(q,q) is the classical La- B. Classical Green's function
grangian. If q;(T) is a conjugate point of|y, then the determinant

For small values of: (i.e., the semiclassical limitusing  det(— aéq V\/,C') in formula (3) is formally infinite, but this
the stationary phase approximation, all preceding integra'ﬁappensoonly for restricted values Bf so that, in this sec-
are expanded around the stationary solutions, that is the Claﬁbn we will focus on the general case, for W,hinT) and
sical orbitsqf'(t) going fromqg to g during timeT, each of % e{re not conjugate points. '
them thus giving a contributioK,(q,qq,T) to the propaga- Apart from t=t’, G(t,t') obeying the homogeneous
tor, whose final expression reads formally as folldu/3]: Jacobi-Hill equatiorD-G=0, so that, introducing the nota-

tions
Ki(d,00, ) =K{*(q,00, T){1+i%C1(q,0o, T) + O(A?)},
2 G_(t,t")=g(t,t") for O<t<t’,
whereK(9(q,qo,T) is the dominant semiclassical contribu- g.(Lt)=g(tt) for '<t<T, 8
tion to the propagatoK(q,qo,T):
one immediately obtains
1 52 1/2
(0) - - _ ! , ,
Ki™(0,00.T)= (2mih) " de!( aqaqo\/\/f’(q,qo,T)) g=(t,t') AL(t)
p ’ :M(t) ’ L] (9)
G.(t,t") B.(t")

: )

i T
Xex;{%wf'(q,qo,T)ﬂEm _ _ o
where M (t) is the (2ZfXx2f) monodromy matrix, depicting

. . . . the linear stability around the classical orbit in the phase
|
whereW(d,qo, T) is the classical action and is the Morse space.A. and B.. are four X f) matrices, whose values

i[nd]ex of the orbit. TheC,(q,do,T) expression is given by 56 getermined from the boundary conditions at tirme':
13

1JT (4) g.(t't")—g_(t',t")=0,
8o 7 | %“’,t’)— dgt+(t'1t')=11 (10

L (3) 1 y\/(3)
+ZJO fo dtde VOV ()

and at time€=0 andt=T:
X[3Gij(t,1) G (1,1) Grp(L',17)

F26, ()Gt )Gt ], (@) .

G.(T,t")=0. (11
where theV("(t) are higher-order derivatives of the poten-
tial V, evaluated agf(t). For a Hamiltonian which separates between kinetic and
The classical Green’s functia#(t,t’), associated with the potential energyH=p?/2+V(q), M(t) has the following

classical orbit, is anf(x f) matrix solution of the following simple structure:
equation[13]:

D-G(t,t")=168(t—t"), (5 M(t)= (12

Jo(t) Jl(t)}

Jo(t)  Ja(t)
where D is the Jacobi-Hill operator, controlling the linear

stability around the classical orbit in the configuration spacevhich leads us to the following explicit expressions for the
[13] four matricesA. andB.. :
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A_(t")=0, right (f X f) submatrix of the matriM, gives the linear dis-
P Tiur placement of the final position for a change in the initial
B-(1)=J; (') =Jy (1) Jo(T)Jy (1), momentum (the initial position being fixed togg), i.e.,
A (t)=J](t"), 8q(T)=34(T) Spg. Thus, J;(T) is the inverse matrix of
B, (t')= _Jl—l(T)Jz(T)Jlr(t,), (13) (—&S%V\/f') which has been supposed to be invertiliéT)
andqg are not conjugate poinfsFinally, the full expression
provided thatJ; }(T) is invertible. J;(T) being the upper for the classical Green’s function reads

Ji() [ (t)=ITHT)IT)I{ (1] for O<t<t’,

[J,(t) = J1(1) 37 H(T)I(T)] Ji(t") for t'<t<T. (14)

g(t,t')=

Using the symplectic structure & (T), one can show that expected, the Green’s function vanishes at initial and final
times[i.e., G(0t')=G(T,t")=0] and fort=t’, the deriva-
Gt H=G"(tt") (15) tives of each diagonal elemegt;(t’,t") (continuous ling
andg,,(t’,t") (long dashed lingare discontinuous whereas,

as expected because the operdtand the boundary condi- TOM Property(15), the two off-diagonal elements are equal

tions are symmetric as it explicitly appears in the discretddotted and dashed lings
version of the problenisee Ref[13]). This is also empha-
sized in Fig. 1, where the four matrix elements of a classical
Green'’s functiong(t,t’) (for t'/T=0.6) are plotted with re-
spect to time. This example corresponds to a classical orbit
of the 2D hydrogen atom in a magnetic field having initial  From Eq.(4), there are three contributions@® (q,qo,T),
and final points on the nucleus, namely, the closed orbit havhamely,
ing code 0—and whose trajectory im,p) coordinates is

also shown in the figure(See Sec. VI for all detailsAs

C. Getting C4(q,qo,T) by integrating a set of first order
differential equations

;
Il(T>=f dt ViR ()G (1,0 G (1),
0.4 0

03

T(T
= [ ararviovise

Xgij(tit)gkl(tlt’)gmn(t,1t’)1 (16)

T(T
T =[] atarviovise
0 02 04 06 08 1 070

vT X Gil (1) Gim(6, ) Gin(L,).

FIG. 1. Example of a classical Green's functigift,t’) in-
volved in the calculation of thé& corrections for the propagator
K(q,90,T), for the caseg=q,=0. It is associated with the closed Even if, in principle, one can computgt,t’) for any (t,t")
orbit 1243 of the 2D hydrogen atom in magnetic field, whose tra-values using Eq(14), direct evaluation of the double inte-
jectory in (u,v) coordinates is inserted in the pitee Sec. VI for  grals|, would be time consuming and numerically ineffi-
all detaily. This trajectory starts and ends at the nucleus, depictegjent using standard integration routines, especially because,
by the black circl_e. Each curve_corresponds to a matrix elemenfrom its definition,G(t,t’) is not a smooth function around
g (t,") plotted wuth_r_espect to timg fqr tl/T:.O'e' As eXpeCte.d. the linet=t’. In what follows, we will show that the preced-
from boundary condition§7), the Green'’s function vanishes at ini- . . . .
ing integrals can be transformed in such a way that their

tial and final timeg[i.e., G(0t')=G(T,t’)=0] and fort=t’, the : . - ) .
derivatives of diagonal elements;(t’,t') (continuous ling and values can be obtained integrating a set of first order differ-

Gy’ t") (long dashed ling are discontinuous whereas, from sym- ential equations along the classical or_bit, in the same way
metry property(15) [i.e., G T (t,t')=G(t',t)], the two off-diagonal  that, for example, the monodromy matik(T) can be com-
elements are equéatiotted and dashed lines puted.

056207-3



BENOIT GREMAUD

Separatingt>t’ and t<t’ contributions inl, , using
symmetry property15) of G(t,t’) and that the matrix/® is

PHYSICAL REVIEW E 65 056207

(fourth order Runge-Kutta in the present dages mentioned
in the Introduction, the size of the preceding differential set

fully symmetric under index permutations, one gets, afteiis probably not minimal and could be reduced by a deeper

straightforward algebra,
+ T ot 3 s
2 (T):zjo dtfodt’ VROV
X Gij (LG (4t ) Gmn(t',17),
- T t 5 .
& (T)ZZJO dtfodt/ VER(OVIZN(t)

XGi (41 Gim(t,t") Gin(t,t"). 17

In the preceding expressions the Green’s functiént’) is
used only for {,t) values in the triangle €t'<t<T and is
formally written G(t,t")=B'(t)J; (t") [see Eq.(14)], thus
separating andt’ contributions:

;
|;(T)=2fo dt V()G (1,1)B (1)
t
><fodt'Vf%)nu')Jl.p(t')gmn(t',t'>,
.
|;(T):2f0 dt V(1) B (1) Bgj(1) By (t)

t
X fodt’ VEL (1) 311p(t) Igmg(t) Ipnr(t)).

(18)

This leads us to introduce two intermediate quantities,

namely,P,(t) and Qpq(t) (for p, g andr running from 1
to f):

t
Pp(t) = fodt'Vf%)na')Jl.p(t')gmn(t',t'>,

t
Qpar()= fodt'foa)na')Jllp(t’>J1mq(t'>alm<t'> (19

analysis of the structure of these equations. However, it al-
lows a fast and easy computation of the correction
Cl(qqu !T):

(1) find a trajectory going frongg to g in time T;

(2) integrate the differential set fof(t) and M(t) along
the trajectory to obtain the quantit},{l(T)Jz(T);

(3) integrate the set of Eq&0) along the trajectory to get
the three quantities,, |, , entering in theC,(q,q,,T) ex-
pression.

Il. THE GREEN’'S FUNCTION G(q,qo,E)
A. Going from time to energy domain

Since the quantum Green'’s functi@{(q,qo,E) is related
to the propagatoK(q,qq,T), through a semisided Fourier
transform, this relation also holds between semiclassical con-
tributions arising from each classical orbit, more precisely,
i

1 [+
G008~ . dTexr{ﬁET)Kmq,qo,T). @y

Again, a stationary phase approximation is used to perform
the integral, which, for a given trajectory going fragg to q,
selects its total duratiof, such that the classical motion is
made at energf. This operation also gives rise to additional
terms in% corrections, to be summed wit®(q,qo,T), and
whose explicit expressions can be derived starting from Eq.
(4) formally written as followq 13]:

K|(q,q0,T): eXF{;/L_WI(q,QOvT)

(2mih)?
a

VI+CO(anOaT)

+i%C1(9,00,T) |, (22

Co(q,99,T) being the(logarithm of usual semiclassical am-

in a way such that; (T) [and |,(T)] are solutions of the Plitude. ThenW;(q,do.T) and Co(q.go,T) are systemati-

following set of differential equationgesides equations for

X(t) andM (1)

1=V (DG (11 G(tD),

Po= Vi) I1p(t) Gnr( 1, 1),

13 =V G (1B (DP(1),

Qpar= Vi) I11p(DI1mg(DIznr(1),

1 =VROBL(DBG(DBA(DQpq(t) (20

with initial conditions|,(0)=15(0)= P,(0)=Qpq(0)=0.

This set of equationd3+4f2+3f+3 in total (i.e., 33 for a

cally expanded around:

5T2
Wi(q,do. T)=W[*+ 5T WD+ —-W(?

5T 5T
IARRVYC IRy )
5 W TR

(54T2
Co(@,Q0, T)=C{+ T Ci+ —-C, (29

with 6T=(T—T,). Terms arising fromC,(T) expansion
would contribute only tdi? correction and can be discarded.
Performing the imaginary Gaussian integrals leads to the ad-

2D system is easily integrated using any standard methodditional # corrections:
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2

T—E 1 Ly24 @) X(t,To+ 6T)=XO(t)+ 6T XV(t) + ix(2>(t)
Cy (q,QO,To):ZWFZ)[(Co )°+Cg7] 110 2
5-'-3
wiclh w5 (w®)? i X®(t)+ .- - (28)
- - += .
20W)?  B(WP)? 24 (Wf*)®
(24)

and from which one obtains the higher derivatives of the
classical actionV(" at T=Ty:

The preceding formula is similar to the one in REE3],
where the authors have expressed the coefficient

T_E . - . W= —H[XO)t)]
C;:77°(9,q90,Top) in terms of derivatives of amplitude and ac- I '
tion with respect to energye. The full expression of W,(Z):—Xi(l)Hi“),

G(0,q0,E) is then given by W= _(Xi(z)Hi(1)+Xi(l)Xj(l)Hi(j2))'

W = — (XEH®+ 3XMXAHE + XOXOXOH),

2 1
Gi(d,00,E)=
114, %o (Zwih)(f+l)/2 |W|(2) detJl(To)|l/2 (29)
_ where all derivatives oH are evaluated aX(©)(t).
 ex I—Sn( £)-i 75 Equations forX("(t) are deduced from Hamilton’s equa-
7 24 2" tions governingX(t,T) evolution:
X{1+i%[C1(9,00,To) +C1 "F(0,00,To)]
+0(42)}, (25 XM =3 HPXD,
Xi(z)=2ijH},E)X(kz)JrEinJ(ERX(kl)X,(l),
whereS,(q,qp,E) is the reduced action and Xi(a)zzijHJ(E)X(kS)+32ijHJ(%)X(kl)sz)
# 3 HfXEXOXD, 0
h=n if Wi?>0,
_ i . . . (O)
s=wtl it W<, (26) where again all Qerlvatlves dﬂ are evaluated ax™(t).
Thus, we are facing three differential sets of the fox#
=SH®XO+3Y® (i.e., nonhomogeneous linear differen-
B. Getting C] (0,0, To) by integrating a set of first order tial equationy with the important property that the vector

differential equations Y@ only depends on vectod$!) with j<i, so that they can

be solved one after the other. Solutions of these honhomoge-
neous linear differential equations are expressed with the
Ynonodromy matrixv (©);

In Sec. Il C, we have shown th&,(q,qq,T) can be
computed by integrating a set of differential equations alon
the classical orbit going frongy to g in time T,. In this
section we will show that it is also true & 5(q,q9,To),

which involves derivatives of bothW,(q,q,T) and XD(t)=MO(1)XD(0),
detJ;(T) with respect tar. @) ) @) @)
For all T, we have the following functional relatiorg XE2(1)=M(1)XH(0) + F(1),
andq being fixed: XB)(t)=MOt)X®(0)+FC)(t). (30
dW(9,90,T) . . . .
7 E(q,90,T), (27 Among the 3<(2f)-dimensional space of solutions given by

preceding expressions, the relevant one is selected by trans-
posing on initial valuex(V(0) (for i=1,2,3) the two bound-

where E(q,0o,T) is the energy of the classical trajectory, &Y conditions

q(t,T), going fromqg to g in time T, that is, the value of the
HamiltonignH taken at any point on the corresponding phase q(0,To+6T)=qy and q(Ty+ T, To+6T)=q. (32
space trajectorX(t,T)=[q(t,T),p(t,T)].

Writing T=Ty+ 8T, the Taylor expansion of[ X(t,T,
+6T)] is easily deduced from the Taylor expansion of Introducing positiong®) and momentump” parts for
X(t,To+ &T) around the reference trajectox(t, T,) [noted  vectorsX(), the Taylor expansion of the preceding equations
hereafter aX(O(t)]: leads to the following boundary conditions:
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q(0)=0
q®(0)=0
q®¥(0)=0

Thus, the initial valuep’(0) are implicitly determined by

PHYSICAL REVIEW E 65 056207

a®(To)=—qO(Ty),
q4®(Te)=—aO(To) — 2™ (Ty),
and  q®)(To)=—q@(Te)—3q™(To)— 393 (Ty).

(33

stored at the same position in matrd'M (T,)/dT", for

the final valuesq"(T,), through the integral expressions which we will derive general expressions. For this purpose,

(31), which for X*) reads

(q(l)(To))_ J2(To) Jl(To)( 0 ) y
pD(To)) " 35Te) 3uTo) |0 B

showing thus thap™®(0)=—J; }(To)qO(Ty).

ThenF®)(T,) andF®)(T,) are easily computed by inte-
grating sets of differential equations obtained from Ef),
allowing us to derivep®(0) and p®(0) values from Eq.
(31), solving systems similar to E¢34):

p3(0)=—I; H(T)[qD(To)+2qM(To) +fP(Ty)1,
p(0)=—3; H(T)[a@(To) +3gM(Tp)
+3q3(T) +1O(Ty)],

35
where we have introduced the notatidf’(g(") for vec(tor)s
FO). Quantities likeq®(T,), q™(T,), and g@(T,) can
also be expressed in terms %f%(T,) and its derivatives.

At this point, from the values of the three vect{®(T,)
and using Eqs(29) at time Ty, all derivativesw(™ of the
classical action can be computed.

We now explain how to compute derivatives of defT).
More precisely one has to calculate the two coeffici@ffé
andC{?, which are derivatives of-In\/[detd,(T)[, so that,
using the well-known formula

d In|detd])=Tr| J7* ) 36
d_T(n| etd|)=Tr aT (36)
[J being any(invertible) matrix], expressions oC{" and
C{? become

1 N dJy(Ty)
Cél’=—5Tr(Jll<To> ;T"),
2
C82)=—%Tr(Jl (To)ﬂ
dJ dJ
~3;4(To) 1( O)Jl (1ol 0)), (37)

wheredJ;(Ty)/dT means derivative ad,(T,) when chang-
ing total timeT (and thus the classical orhitvhich must not
be confused with]; (time derivative ofJ; along a given
classical orbik. J1(T) being the ¢ X f) upper right submatrix
of the monodromy matrixM(T), d"J;(Ty)/dT" is also

we first introduce the explicit notatioM (t,T), representing
the value of the monodromy matrix at tin@long the orbit
going fromqq to g in time T. Writing T=Ty+ 6T, the Taylor
expansion oM (t,T) for a given timet reads

5T?
M(t, To+6T)= M(O)(t)—l— ST M(l)(t) + TM(Z)(U’
(38)

whereM(©)(t) is the monodromy matrix along the reference
orbit (i.e., going fromqg to g in time Ty). ThendM(T)/dT
andd?M (T,)/d T? are the Taylor coefficients of monodromy
matrix M (To+ 6T,To+ 6T) and thus have the following ex-
pression:

dM(To) .

—a7 M1 +MO(Ty),

d’M(To) . :

%: MO(To)+2MD(Te)+M@(Ty). (39

Equations governingv)(t) evolution are easily deduced
from the one fortM (t,T):

M (1)_ |k[H(2)M (1) 4 H(3) X(l)M (0)]
M i(jz): ik[H(Z)M (2) 4 2H(3) X(l)M I(jl)

H(3) X(Z)M (0)+ H(4) X%)Xgl)M I(jo)]' (40)
with initial conditions M®)(0)=M()(0)=0. Obviously
these equations are similar to those govermifig evolution,

so thatM)(T,) and M(®(T,) values will be obtained by
integrating similar differential sets. Actually, it can be shown
that all these set€or both X andM @) can be concatened
in only one(largep set of differential equations, whose inte-
gration can be done at once.

Finally, gathering all quantities in E¢39), the two ma-
tricesdJ; (To)/dT andd?J,(T,)/d T? are inserted in Eq37)
thus giving values focgl) andC{?, which, along with the
values forW(" , allow us to compute the numerical value for
C1 5(a,90, To).-

Obviously, the number of equations in the preceding dif-
ferential sets can be reduced, especially for Hamiltonian
separating into kinetic and potential energy, for whkt}'fI
and Hfﬁ,)m coefficients are nonvanishing only when 1
<j,k,I,m=<f. However, these sets are straightforward to
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implement and need only a small amount of CPU time to be Then, the next step would consist of performing all imagi-
solved using any conventional integratdfourth order nary Gaussian integrals, leaving out the integral along the

Runge-Kutta in the present case orbit. However, in the preceding coordinate transformation
(42), there is an hidden subtlety, affecting orlycorrections,
IV. TRACE OF THE PROPAGATOR K(T) which probably explains why it is not mentioned in usual

_ textbooks[1,3], where authors are only looking at leading
The diagonal elements§(qq,qo,T) of the propagator are  gemiclassical amplitudes.

related to classical orbits starting frogqy and returning to Actually, the problem is that the integral ovq% corre-

this point after timeT, i.e., closed orbits. S_umming aII_ these sponds to the length of the classical orbit, only whigm- O;
diagonal elements., that is performing the |.ntegralf0r a nonzero value, it will correspond to integration on a
fﬁqo K(do,do ’.T)' .W'" S|8|eCt’ throufgh aﬁoah_er. _s}aﬂon?ry Iclosed curve, slightly displaced from the original trajectory,
pmoaniniﬁrr::O:rI;nZtlﬂgi-c (()asrﬁ)?ji?: r?)':éifg rc\(l)vrrg:cti:)nr:tslatoalr(]ai dl?a whose length will thus depend on ti§g value. To enlighten
quat: p : this, let us suppose that we have a bidimensional system, for

ing order of the semiclassical contribution K(T) from . S o . )
each periodic orbit can be derived following the Samewhlch one periodic orbit is a circle of radil®,, traveled at

. . constant speeW,=2mR,/T. The coordinate transformation
scheme previously used for the propagator itfe/13]. is then easily made using polar coordinatessy:

A. Feynman path integral N
. . L . . . r=Ro—&;. (44)
Adding the integral over the initial and final positions in

Eqg. (1) yields[13] _ _ _ _
The negative sign appears to preserve orientation. The vol-
lementix dy b
K(T)zquodqldqz,...,qu,l(zwiﬁAt)*Nf’Z ume elementix dybecomes
dxdy=rd@dr=(Ry—&y)dadéy, (45)

. N—-1
I On+170n
Xex;{% nZO L(T,qn)At+O(At):|

which shows that, in this casdqﬂ, is not simplyRyd 6, the
(41)  length on the periodic orbit, but is given by

with gn=(o.
The stationary phase approximation around a given peri- day=(Ro—£&5)d6# Ry do. (46)
odic orbitqf'(t) is made explicit when replacing the preced-
ing Nf integral with[13] This simple example shows actually that the variatieis
not independent of, , whereasy is.
f dqﬂ)dgg dé& dé,, ... déy_ 1 (42) For a general system, the variable that can playéthele
is actually the time, whose variation domaip0,T] is fixed
with §nZQn—q|°|(nAt)- Forn=0 (i.e., initial position), only and then obviously independentﬁ?. Thus one has to gen-
deviations perpendicular to the periodic orkjt have been eralize the relationldo=q°|dto, valid only on the periodic
introduced because the classical actif{d,qo,T) is con- orbit. This is done by writing explicitly the coordinate trans-
M0 : Ly,
stant along the orbitdepicted byql). The contribution formationg— (to,&):
K,(T) of this periodic orbit toK(T) then read$13]
Nf/2 | q=0°(to) + &5ni(to), (47)
= — — I q&
Ki(T) 27TiﬁT) ex[{ﬁwl) f dgpdé; d§;

wheren;(ty) are f—1 orthogonal unit vectors lying in the

i plane perpendicular to the periodic orbit at tilgeThe Jaco-
Xd&, ... déy-1€xp 57 W aptals bian of the transformation reads
i i
— _ J . .
X| 1+ == Woancfadoéot 52 W.abocfaébécba deﬁzde[ch £y, np ]
0:%0

1
- _gw,ach,defgagbgcgdgeff

72 ’ “3

~cl 1 L cl
=1q |—w§o'q : (48)

where¢, = & whena=(0,i) and&,=0 whena=(0,0). W,

is, in the largeN limit, the classical action of the periodic Inserting the volume element in E@3), the contribution
orbit. Full expressions fow ,,, W apc, andW 4.4 can be  K;(T) of the periodic orbit now reads, keeping only terms
found in Ref.[13]. giving rise to# corrections,
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KiM=\s-7T 7 by averaging over the time, (i.e., over the full periodic

N )’\”’2 F{ i W) The first# correctionC4(T) to K(%(T) is then obtained
|
orbit) the coefficientC,(T,ty), given by

« [ 1ot dgsdads,. . da s
CuTto)= 5 Gt 06, (t0Gu(t.)

i
X ex ﬁw,ab§a§b>

L2 vit(t,
j dt Vl(fk)(t)glk(out)gij (t,t)

2 ~Cl| 2
&V q°?
X1+ WJF 57 W.abctadbée LT e
+ ﬂfo fo dt dt Vijk(t)vlmn(t )[3g”(t,t)
[ i V,EW,abcfaga'fbfc
+ﬂw,abcd§a§b§c§d+ ﬁ |qcl|2 ngl(t,tr)gmn(tr,tr)
+2G; (4,1 Gjm(t,t") Gn(t, 1) ], (53
— W W , 49 . - .
7052 AbC derbabblobatels 49 wheret, represents thus the positiog on the periodic orbit

at which boundary conditionés0) on the classical Green's

where we have seen that'= — ¢ 4V and we have introduced function G(t,t") are appliedqq is also the initial(and fina)
the indexd for (0) position on the periodic orbit for classical motions corre-

As explained in Ref[13], the imaginary Gaussian inte- spondlng to timeg andt’ entered in the preceding expres-

on.
grals can be expressed in terms of another classical GreenS

functionsG(t,t"), whose boundary conditions are extracted

when comparing the detailed expression\f,, with the B. Classical Green's function
discrete version of the Jacobi-Hill operathy, see Eq.(6). As in Sec. Il B, where expressions for classical Green’s
Especially, it can be shown that, in the lariyelimit, they  functions for the propagatdf(q,q,,T) where derived, we
become introduce thej.(t,t’) notations andA-.(t'), B.(t') matri-
ces. Using all boundary conditioniat timest=t’, t=0 and
Ggot")=g(T,t"), t=T) gives rise to the following equation:
’Ptog(O,t )='Pt0g(T,t )=0,Vt' €[0,T], (50) 1 0 ] A_(t))
Q,G(0L) = Q G(T ), o o MT g )
where we have introduce®, the projector along the peri- REE V(T =31 (t") -
odic orbit at timet, and @ =1—7 . In Ref.[13], only the 1o Q, (M) ()’ 54

f2+f boundary conditions corresponding to the first two
lines were given, whereas tHé—f ones corresponding to The preceding set of linear equations, formally writtért’
the last line were missing. =J3, cannot be solved directly because thd X2f) matrix
Performing all imaginary Gaussian integrals and takingA is obviously singular. More precisely, existence and num-
the largeN limit in Eq. (49), the contribution of the given ber of solutions for the systetd x=b are determined by the
periodic orbit to the trace of the propagator reads as followstwo following properties:
(1) Solutions exists if for all vectory such thatA 'y
1 (T =0, theny-b=0.
K|(T)=KF°’(T)[1+iﬁ$f dtocl(T,to)+O(ﬁ2)], (2) If the preceding condition is fulfilled, and i is a
0 (51) solution, then for all vectorg, such thatd xg=0, X+Xg is
also a solution, showing that the dimension of the solution
space is that of the nullspace 4f.

K(O(T) being the usual semiclassical leading ordel3,2
(M g g oride 2 In the present case, equatidr y=0 leads to either

K(O(T)= 1 T o 0
V2mh |9eT defm(T)—1]|*2 0 Q, y=0=yx ito) (55
[
Xex;{flme)—i g,uﬁ'i sgndgT|, (52) or
_ _ _ o _ - ~ 1 0
whereW,(T) is the classical action of the periodic orbit and [M(T)—1]y=0 with y=3 y#0. (56)
wu its Maslov index. 0 Qto
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For a generic unstable periodic orbit, the eigenspace associ- 1 - - - -
ated with the eigenvalue 1 ofi(T) (T being the period is 3
of dimension one and is spanned by the vector parallel to the Y D
flow (see the AppendixX(ty) =[q(tg),p(tg)], so that, in the 05 | //’ \\
second case, one gets X(t,) andy is a solution of o

1 0 (o) ° |

—P(to 0
y=| . : (57)

0 < ( Q(to))

which is impossible unleshs(to)=0, which, for Hamiltonian -0.5 S A

separating into kinetic and potential energies, corresponds to 0 02 04 06 08 1

a self-retracing periodic orbit, for which a slightly modified T

approach should be developed]. Nevertheless, this caseis  FIG. 2. Example of a classical Green’s functigift,t’) in-

peculiar, and we will suppose in the rest of the section dhat volved in the calculation of thé corrections for the trace of the

never vanishes along the periodic orbit in consideration. — propagatoK(T). It is associated with the periodic orlii234 of the
Thus, the nullspace ofd " being one-dimensional and 2D hydrogen atom in a magnetic field, whose trajectory urv§

spanned by the vect 0,' to)1, Ed.(54) immediately shows coordinates is inserted in the pl@tee Sec. VI for all details The
P y £0.q( 0)]_ a.(54 - y black circle depicts the nucleus, whereas the cross corresponds to
that for any column of matrix3, we get[0,q(ty)]- B;=0,

. . " . ) the initial and final points on the periodic orbit at whicift,t")
fulfilling thus the first condition. Denotingky as a solution il the boundary condition¢50). Each curve corresponds to a

of Eq. (54), which can be easily obtained using singular matrix elementg;;(t,t') plotted with respect to time, for t'/T
value decompositioiSVD) of matrix A, and the nullspace =0.3. Actually, we have plotted the coefficient of the rotated matrix

of M(T)—1 being spanned b}((to), the general solution of G(t,t’), such that its first row corresponds to the direction parallel

Eq. (54) reads to the orbit;Gy4(t,t’) (continuous ling and Gy(t,t’) (dotted ling
are thus equal to zero for initiat €£0) and final (=T) points. The
X=X+ [ a1 X(tg), axX(ty), . . . ,aiX(te)], (58)  other boundary conditions can also be verified in the figure; the

. _ dashed line [Gx(t,t’)] [respectively, the long dashed line,
wherea; are unknown real parameters still to be determinedg, (t,t/)] has not only the same value at initial and final time, but
Actually, in Eq. (54) one boundary condition has not been

) i also the same slope, which means tigai(t,t’) [respectively,
taken into account, namely, thﬁ’qog,(o,t’)=0 which, us-

Goo(t,t')] and its time derivative fulfills the periodic boundary con-

ing that the projecto?, reads ditions (50). Finally, for t=t’, the off-diagonal coefficients
Gyo(t',t') (dotted ling and Gy (t',t") (dashed ling are equal, as
Q(to)éﬂ(to) Qi(to)QJ(tO) expected from the symmetry propedy' (t,t')=G(t',t).
(Pry)ij=| — =— , (59
"L Jatto)? la(to)|?

ij
to time t. The starting point, on the periodic orbit is de-
picted by the cross. Actually, we have plotted the coefficient

A_(t) 1 4(t)q" (tg) O of the rotated matrixG(t,t’), such that its first row corre-
(B_(t’)) =X —| - ° - ° 0 Xy, (60 sponds to the direction parallel to the orkit(t,t") (con-
- laCto)l*[ P(to)d” (to) tinuous lin@ andG,(t,t’) (dotted ling are thus equal to zero

which, of course, is now independent of the particular solufor initial (t=0) and final {(=T) points. The other boundary
tion Xp. conditions can also be verified in the figure: the dashed line
Whereas in the case of the propagako(q,do,T), for  [Gou(t,t')] [respectively, the long dashed ling,(t,t')] has
which we were able to give an explicit expressidd), the  not only the same value at initial and final time, but also the
classical Green's function associated with the trace of th@ame slope, which means thak,(t,t') [respectively,
&rﬁgﬁgﬁé‘?};&gl;g%:ﬁg”js ttgoggthai"; "i?se"’r‘]ruf%’ ::ii‘l“)\’/alu Coo(t,t')] and its time derivative fulfill the periodic boundary
; . conditions (50). Finally, for t=t’, the off-diagonal coeffi-
for any (t,t"). Although it clearly appears that matri¥/ ) - ) -, )
expression(see Ref[13]) is symmetric, meaning that the CIENtSYw(t’,t") (dotted ling and G,(t',t") (dashed ling
classical Green's function must fulfill the property @€ €qual, as expected from the symmetry property.
G " (t,t")=G(t' 1), getting the later directly from Eq54) is
not obvious. However, in the case of the 2D hydrogen in a
magnetic field(see Sec. VI for all detailswe have numeri-
cally checked that the property holds. For example, in Fig. 2
the four coefficients of classical Green’s functigft,t’) (for As seen previouslysee Sec. Il ¢ we will explain how
t’/T=0.3) of the periodic orbit 1234 are plotted with respectthe numerical value of coefficien&,(T,ty) can be obtained

allows us to gety; values and, from that, the final expression

C. Getting C4(T,ty) by integrating a set of first order
differential equations

056207-9



BENO]T GREMAUD PHYSICAL REVIEW E 65 056207
. . . . . . (61
by integrating a set of differential equation, using the stan- T or
dard Runge-Kutta method. There are now four contributions + _J f 1\ /(3) (3) (47
I5(T)= dtdt’ Vi (O (t
to Cl(T,to), namely 2( ) oJo I]k( ) Imn( )

T Xgl(t!t)g tyt,)gmn t,!tl)l
|1(T)=j0 dt ViR (DG (6,0 G (L), ’ l (

T(T
b= atar vigovie)

:
I|(T)=fodtviﬂ-sk)(t)g.k(o,t)gij(t,t), G (LG (LGl E)
it jmUts kn\ts .

|
The two main difficulties now are th&i(t,t’) does not factorize anymore in a product of matrix at tinaed a matrix at time
t’, nor does the symmetric propergy' (t,t")=G(t’,t) explicitly appear(even if we have numerically checked that it is
fulfilled). Nevertheless, as seen previously, separatirg() and ¢<t') contributions inl; (T) expressions and introducing
four quantitiesPS) for 1<i=<4, allows us to computé, , by integrating the following set of differential equations from
t=0 to T [besides equations fof(t) andM(t)]:

PE=ALOVILDGn(t),  PEI=1p(OVILOGna(t1),
PO =Ba(OVELOGmi(tD),  PEI=3op(OVELD Gl L),

13 =VE0G; (1) I (DPP) + VDG (1) I (D PE( 1)
+VE(0 G (LHALD PR+ V(DG (0B ()P (62)

with vanishing initial conditions foPS) andl, . For each time step, one must compute matrisesandB _ (and from there
matricesA, andB,), solving the linear system described in the previous section, using singular value decomposition of
matrix A, which, being independent ¢fis done before starting the Runge-Kutta integration. Skipping intermediate steps, the
differential equations leading tg (T) computation reads as follow, introducing another eight quan@%

QU= VELHOALDOALDALD, QUL =VE (1) Ia1p(1)Iamg(t) Iane (1),
Qé)zq)r_Vl(rsn)n(t)Agl(t)Aqm(t)Brn(t)- QE)Gq)r_Vl(r?1)n(t)J2Ip(t)‘]2mq(t)‘]1nr(t)1
Q) =V (DALDBILOBAM), QU =VEL(1)I2p(H)I1mg(H)I1n(D),
QW =V (OBLMBIDBARMD, QB =VE) ()35t Imd(H)I1nr(D),
15 = VA1) I21p(1) i (1) Ik (D QE(1) + BVER(1) i (1) 51 (1) Ik (D QL (1)
+3V.<,3k><t>J2ip<t>J1,-q<t>J1kr(t>Qﬁfq’rm+V.‘fk’malip<t)J1,~q<t)Jlkerpqr(t)
+VEOALDOAGDALDOQEN(D) +3VEN DAL (DAL (DB (HQE (1)

+3VR(DAL(DBG (DB (D QSR + V(B (1B (1B () QS (1) (63
|

with vanishing initial conditions forQSgIr and |, . Finally, (1) achieve the SVD decqmposition of the matri,
one must add equations leading ltoand I, computation, appearing on the left-hand side of EG4), and compute
namely the projector matrix appearing on the right-hand side of

. Eq. (60);

L=V (DG (DG, (2) integrate the differential se63) along the periodic

i|:V|jk( ARG (L), (64)  orbit (starting at point depicted bty). At any timet, use the

preceding SVD decomposition to obtain a solutidph and
where we have used(0t)=A(t). Taking into account the projector matrix to get the true solutipA_(t),B_(t)]
equations forX(t) and M(t), this gives rise to a total of and thug A (t),B,(t)], using Eq.(60).
8f3+4f2+7f+3 equations, that is 97 for a 2D system. Finally, the coefficient C,(T,ty), being a smooth
In practice, having found a periodic orbit and for a givenfunction of ty, the average over timg,, leading to thes
to along this orbit, the coefficien€,(T,ty) is computed in  correction termC4(T), can be handled by any conventional
two steps: integrator.
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V. TRACE OF THE GREEN'’'S FUNCTION G(E) AW, (T)

=—E(T 6
Steps leading to the semiclassical contributiGn(E) aT M (67)

from a given periodic orbit to the trace of the Green’s func-
tion G(E) are identical to those giving th@,(q,q,,E) ex-  still holds for a given periodic orbi&(T) being its energy as
pression, so thab,(E) reads function of its period, which is still given by the value of the
HamiltonianH taken at any point on the corresponding phase
To i - space trajectoryX(t,T)=[q(t,T),p(t,T)]. Thus, the Taylor
== T exp{gS,(E)—i E,u,} expansion ofX(t,T) around the periodic orbX(t,Tg), will
't [defm(To)—1]] lead to th?)same expressions Wf') coefficients[Eq. (29)]
: T—E 2 and for X!"(t) equations[Eqg. (30)]. The only differences
X{AIHIACA(To) +C1 (T 1+O(R D)}, (69 with the preceding section arise from the boundary condi-
whereCI~§(T) is given by tions fulfilled by X((t), deduced from the equation
X(0,T)=X(T,T), i.e.,X(t,T) is a periodic orbit of period.
The Taylor expansion of this relation leads to the following

G|(E)

1 ..
T—E — (124 (@) conditions:
C; (To) ZWfZ)[(CO )+ Cp]
WOCw W 5 (W) XB(0)=XD(To) +XO(To),
T2W@)2 gW@)? | 28 (WD) X@)(0)=X@(To) +XO(To) +2XD(T),
(66) X®)(0)=XC)(Tg) +XO(Ty)+3XD(Tg) +3XA(Ty).
Wfi) (respectively,Cg)) are the Taylor coefficients of the (689
W, (T) [respectivelyCy(T)] expansion around . Solutions of the differential s€B0) still have the following
Computation ofW(" is much the same as in the Green’s formal expressiong31), which, inserted in the boundary

function case, because the functional relation conditions(68), leads to equations oX()(0) only:

[1=M(To)1X®(0)=XO(Ty),
[1=M(To)1X®(0) = XO(Tg) + 22X (Ty) + F(Ty),
[1=M(To)IX®(0)=XO(Ty) +3XD(Ty) +3X P (Ty) + FE(Ty). (69)

The matrix1—M(To) being singular, solving the preceding WA = —[XE(0) = XO(To) + aXO(Tg)]- VH[XO(T)]
linear equations need additional discussion, which, for sim-

plicity, will focus on X(l)(O).onIy. First, the nullspace of =—X(0)- VH[XO)(T)] (72)
1-M(To) " is spanned by X(©)(T,), which is obviously

orthogonal toX(®)(T,), the right-hand side of the equation o .

for X(1(0), thus showing that this equation admits solutions.because of the  Hamilton’s  equationsX™(T,)

: £ (0) =S VH[XO(Ty)].
tThheec\,}fQE nsl:el':sgfa;:g&fgrl:/é(;reogdbsemg spanned bY(X(To), These two properties also hold in the caseXGf(O) and

X©)(0), but areslightly more complicated to establish be-
cause the right-hand sides of the equations inveiV¥T,)
_ and derivatives oK (Ty).

XD(0)=XM(0)+ aXO(Ty), (70) Thus, integrating the same differential sets that were used
for G(q,qo,E), one is able to compute the first four deriva-
tives of the actionW(", with respect to the period.

whereX{M(0) is a particular solution of the equation. Actu- Starting from theC{?)(T) expression

ally, the termaX(®)(T,) corresponds to a displacement of

the initial conditions along the flow, which, of course, gives

back the same periodic orbiat first order inT—T;). We CO(T)=InT—3In|dT| - 3In|defm(T)—1]| (72
thus expect that this term has a vanishing contribution to

W which is easily verified when inserting the general

solution in ther(z) expressior(taken at timet=T): and using the fact thateT=1/0tE= — 1/&$W, , one obtains
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c(T L, 1w In|d -1

o ( O)_T_OJFEVW_EE n|de{m(T)—1]],

o Ty — Ly LD W 1 @ ol defm(T)—1 73
0 (To)= T—S EW > W fﬁm efm(T)—1]], (73

which means that one is left with the calculation of derivatives ffdfim(T) —1]| with respect to the perio@. As shown in
the Appendix, dé¢m(T)—1] is given by the determinant of thef X 2f matrix N(T) defined as follows:

N(T)=M(T)—[1=P(T)=P.(T)], (74)

where we have introduce®(T) [respectively,P, (T)] the projector on the direction parallel to the fldnespectively,
perpendicular to the energy shelinore precisely, thé(T) andP, (T) expressions are

Pi=g-¢ and P =e -e =-3P%, (75)

whereeg is the unit vector tangent to the flow at initi@nd thus fingl time ande, =>¢g. Now, using again formuld36),
derivatives of détm(T)— 1] with respect to the period read

d ,ldN(To)
ﬁ{detm(T)—l]}ﬂr N(To) a7 |
d? - d2N(T,) ~dN(Typ) ~dN(Typ)
ﬁ{de(m(T)—M}ﬂr N~1(To) e 0 * gt N 0) * a7 (76)
with
dN(To)  dM(To)  dP(To) _ dP(To)
T ~ dT T dr Y 4t >
d®N(To)  d*M(To) = d*P(To) _ d*Py(To)
a2 A ar a4 (77

As seen previouslySec. Il B), dM(To)/d T andd?>M(T,)/d T? are expressed in terms of the coefficieMts)(t) of the Taylor
expansion of the monodromy mat(t,T) [associated with the periodic orlXi(t,T) of periodT] around the periodic orbit
XO)(t) of period Ty, see Eq(39).

Inserting the Taylor expansion &f(T) aroundT, in the P|(T) expression, namely,

1 . .
PUT)=—=———X(T)-X(T) ", (78)
D=

one obtains the derivatives & (T) with respect toT:

o
dP|(To) 1 e e X x @)
gT :”X(O)Hz(x(n.xw) + X0 . x@ )—ZWPH(To)v
d?P(To) 1 (XOT.x1)2  xOT.x@  x®".x@)

=— X@). X 4 x(0).x@) " 4 2x D). x1) ) 4 | 8—— -2— —2— P(To)
4T O xOF 2 xeE 2 xep )

(0. x(D)
—4%(%”-X(O)T+X(°>-X(1>T),
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where allX® are evaluated at time=0. All properties of the classical trajectories of the original

Gathering the preceding expressions into &) allows  Hamiltonian can be deduced from the scaled dynamics using
us to compute Indpi(T)—1] derivatives, which, inserted the scaling transformatio(81). From the quantum point of
together with derivatives of the action, in Eq3) gives the ~ View, this scaling introduces an effectivevalue, which is
numerical values foC{!(To) and C{?(T,), which finally  easily seen on the scaled Satiirger equationt 4= e, for
leads to the additiondl correctionC] "5(T). a fixed scaled energy:

VI. APPLICATION TO THE 2D HYDROGEN ATOM B 7—A~— 1 +_2 = ey 84)
IN A MAGNETIC FIELD " feive 8 :
y
The hydrogen atom is one example of a quantum system
whose classical counterpart depicts a chaotic behavior antihus, the effectivé: is given byy™* and so at a fixed value
has been widely studietsee, e.g., Refl4] for a complete of the scaled energy, the semiclassical limit is obtained
review). It has now become a very useful tool for testing newwhen y tends to 0.
ideas and tools in the quantum chaos area, both on the semi- The singularity in the classical equations of motion due to
classical[20,23 or universality[24] points of view, espe- the divergence of the Coulomb potentialrat 0 is regular-

cially because computing very highly excited states has beized using the semiparabolic coordinates=(\r+X,v

come a standard task on a regular workstation, allowing the_  fr—5. %), giving rise to the following effective classical
semiclassical regime to be reached easily. Even if one W°”|g|amiltoni,an[4 26]:

have preferred to work with the real hydrogen atora., the
three-dimensional ongin this paper we will focus on the H=1p2+1p2— e(u2+02)+ Lu2?(U2+v?) (85)

two dimensional hydrogen atom in a magnetic field, because ! Y

taking into account invariance by rotation around the magyne trajectories corresponding to the original problem are ob-

netic field, gives rise to centrifugal terms in the Hamiltonian;gined when fixing total energyt=2. The associated quan-
(typically L?%2/2r?) which would also contribute té cor-  ,m Hamiltonian reads

rections and would need a study on its own. One must also

1/3

notice that, even if the classical dynamics are identical for A w2l 2 82
both cases, the fact that the magnetic field axis is no longer a H(h)=— 7(—2 +—
rotation axis in the 2D case gives rise to slight modifications Ju®  dv
in the Maslov indice$18,23,25. 1
—e(U?+v?)+ guzvz(u2+v2), (86)

A. Quantum and Classical Properties

In atomic units the Hamiltonian of the 2D hydrogen in a which separates into kinetic and potential energy, so that the

magnetic field reads semiclassical formula derived in the preceding sections ap-
plied to the associated quantum Green’s funct{az,#), the
1, 1 1., hydrogen in a magnetic field being recovered Zex2 (ac-
H= P \/XzTszr FREA (80) tually z/2 corresponds to the nucleus charge
where y=B/B,, with Bo=2.35x 10°T. The classical coun- 1 | 7,h)(7,h]
terpart of this Hamiltonian has a scaling property, that is, if G(zh)= z—FH(h) :ZT z—N,(h) "’ (87)
we define new variables by
~ o3 where|,%) is an(normalized eigenvector off{(#) for the
=y eigenenergyA (%), 7 representing the set of quantum la-
p=v 3, bels, i.e., level number and symmetry propert&se belowy,
~ describing| 7,7 ). The matrix elementq|G(z,%)|qe), where
t=nt, 81 g=(u,v) then reads

we obtain a new Hamiltoniail given by 1
(@G Mla0) =2 -4 ¥-1(G0); =770 89
. PPl Y '
H=y =" ==+, ®2  wh —(q|7%) has b d to be real, with
2 \/ﬁ w erey. ;(q)=(q|7,%) has been supposed to be real, wit
y ‘H(#%) being invariant undep— — p. Takingz=X\ on the real

which does not depend onanymore. The classical dynam- 2Xis: the imaginary part afg|G(z.%)[do), becomes
ics of this Hamiltonian is entirely fixed by the scaled energy

€ given by = IM(A GO o) = 2 ()4 0) AN = ()]
e=vy 2FE. (83 (89)
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to which any classical path going fromto gy at energy\,
gives the following contributiofisee Eq.(25)]:

1 2 !
- ;|m<QIG(x,ﬁ)|qO>|=(2W—WA'(COS(%S'+ ¢')

(90

1
—h( sin(%ler P

provided it is far enough from any bifurcation and tljagind

go are not conjugate points for this trajectory. Amplitudes

and phases being defined by

1
A: 1
! |W) detd (To)|¥2
S=35(0,90,M),
T~ 1
b=—z{nts3|

C=C1(9,00,To) +C1 50,00, To)- (92

Neglecting#Z corrections in Eq(90), the Fourier trans-

form with respect to the variablé=1/4 of the following
function:

(2,”_)3/2
= 2§3/2

B (27T)3/2
2

x—;lm(qIG()\,é“)|QO>

ZT U (D (A0) T PAIN=N (D]
(92

will depict peaks at the classical actiof§#2, with complex

amplitude A, exp ¢/2, which has been extensively used to

PHYSICAL REVIEW E 65 056207

B (27T)3/2

go(g 7 lﬂf,{(q)(pr,{(qO)

T (ndlp?2T¢)

(277)3/2 ¢r {(q)(/lT g(QO)
(0)=— > :
o T e

xf’zé[z—a(x)]—@ A cod S+ ¢y).

32— )],

(95

Moving to the case of the trace of the Green’s function,
the preceding relation@9) and(90) become

1
—;ImTrG()\,h)zz SIN—N\(#)] (96)
and, see Eq(65):
1 _ 1 tr 1 tr tr
—;ImTrG()\,h)|——ﬁA| co gS + ¢

97

1
—hC,‘rsin(%S‘Ur ¢}r) ,
whereS" is the action of the periodic orbit and

*|defm(To)— 17|12

tr
|

aa
(b}r: - E/-LI '

Cl'=Cy(To)+C1 E(Ty), (98)

compare the exact quantum Green’s function with its semi-

classical estimation at the leading orderfin In the same
way, the Fourier transform of the following function:

(2 )3/2
91(8)=— Z

2 W (D, Qo) L2

xa[x—um—zil A cog{S+¢) (99

will also depict peaks at the classical actidggf2s, whose
complex amplitude, given by

1
EA'C' expi ¢, (94)

allows us to extract the numerical value of thecorrection
C.

The energyn being fixed, thes[\ —\ .({)] function se-
lects the valueg (\) of ¢ for which \ is an eigenvalue,
transforming Egs(92) and (93) into

so that the classical quantiti&f, A[", and thes correction
C|" can be obtained by taking the Fourier transform of the
following expressions with respect to the varialjte

(PO IRl J———F J RS ()}
B3 2 g :
tr m 3

a¥(0)=— BolL-1,00)]

_2 -
2 5 (r,dp¥2|7,0)

—zZ Al cog (S + o). (99)

B. Computing quantum quantities

Focusing on the.=2 value, the 2D hydrogen in a mag-
netic field case, one has to find effectifevalues for which
2 is an eigenvalue of the Scliinger equation
H(#) (u,v)=2¢(u,v), which is conveniently written as
follows:
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Green'’s functior{ 28], and thus to take into account symme-
¥(u,v) try properties of the classical Green’s function, which is be-

yond the scope of this paper. For this reason, we also include

the OE and EO series in the remainder of this paper.
Y(u,v) (100 Finally, eigenvalues and eigenvectors are obtained by
solving the matrix representation of the generalized eigen-
value problem A—oB)#=0 in sturmian basegone for
each symmetry clag$4], using the Lanczos algorithm. Typi-
cally, we have computed effective values ranging from 0

1 to 124, which for scaled energy=—0.1 corresponds to
A=2+¢e(u?+v?)— guzvz(u2+v2), roughly 61 000 eigenvalues in total. One must notice that the

generalized eigenvectots, ), for a fixed# value, are ac-

1
2+ e(u?+0v?) — guzvz(u2+v2)

1 & N 9 )
2\ pu? g2
such thato=%2 appears to be a solution of a generalized

eigenvalue problemA—oB) =0, with

=#2

1 7P tually orthogonal for the scalar product defined by operator
B=—Z| —+—]. (101 — Tom.
2\ gu?  gv? B=p“/2:
~ 2
The preceding operatoss, B, and thusH(%) are invariant (7.1 p_|7.r,h y=5,, (102
under all transformations belonging to the symmetry group 2 "

C4,, leading to four nondegenerate series of energy levels, -
labeled EEE, EEO, OOE, and OOO according to R27] so that thd 7,4 ) and|7,%) relations read
and a twofold degenerate series EO and OE, where E means

even and O means odd, the first two letters referring to the 1 p—
u——u andv——v symmetries, the third letter ta—uv. |7 h)= ——=|7.h),
Actually, because of the definition of the semiparabolic co- N(7,h|T,h)

ordinates @,v), only eigenvectors invariant under the parity

. —_— 1
symmetry (—u,—v)=¢(u,v) correspond to eigenvectors rhy=———|1.4), 103
of the 2D hydrogen in magnetic field, allowing us, in prin- Ih) \/<r,h|B|T,ﬁ)| ) (109

ciple, to drop the OE and EO serif$,26]. However, from
the semiclassical point of view, one would have to extend algiving rise togg 4(¢) (95 and ggll(g) (99 expressions in
preceding sections to symmetry-projected propagator angtrms of the computed eigenvectors:

B (277)3/2

90(0) = 5 2 Vng( DV (A0 P20~ L:(2)],

2m¥* S - ~ 5/2
()=~ =5 2 Vnd DY (A 2L~ £:(2)] - (2 Acos(S+ ),

0(0=5 2 (nL[nd) 2o-1.2),

a —
91(0)==5 2 (nd 7.0 oL~ 1(2)] - £2 Af'cosd {S/+ D). (104
|
As explained previously, the Fourier transform of the two C. A corrections for G(q,0o,2)

functionsg, andg! will depict peaks at classical actions and Orbits having initial and final points at the nucle(i®.,

i corrections are obtained from the amplitude of these peak@lzq »=0) are of special interest because they are involved
However, in the case of signal given by(t) in semiclassical estimation of the photoionization cross sec-
=Za, explogt), it is now well known that the harmonic tjon [25,29, which can be directly compared to experimental
inversion method is very well suited and is much more powresylts [30,31). Even if the full # expansion of the cross
erful than the conventional Fourier transform to extract un-section does not reduce @&(0,0,2) contributions, all closed
known frequencieso, and amplitudesa, [20]. In our case orbits are well known and classified, so that this case remains
the signals are the two functions(¢) andg(¢), which are  a nice example of. corrections forG(q,o,2).

of the formZ, A,C, sin({S+ ¢,) besides contributions from all The Fourier transforms of both functiorgg({) (upper
other types of orbitgghost, continuous family, efc. plot, solid ling andg,({) (lower plot, solid ling, for scaled
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08 : , discrepancy for the amplitude of the last two peaks. This is
1 not due to errors or inaccurate calculations in the semiclas-
‘ sical estimation, but rather a manifestation of the limitations
‘ of the Fourier transform. To emphasize this point, we have
} 20 used the harmonic inversion to extract, for each of these
l ' ' \ orbits, the# correction coefficient€ "', from the quantum
function g,(¢). The results are compared to the classical
_/ <) “\ < /V calculation(, in Table Il. The agreement is excellent, the
0.12 . | relative error on the amplitude being lower _than*?_LoAs .
0'06 [ L \ \ usual, the pha}se extract'ed using harmonic inversion, being
O.OO A I H the most sen3|t|ve quantl.ty, the agreement on the sign qf the
_0'06 i )i WV C'.’ rather nice for thq first four. orbits, decreases rapidly.
_0'12 ‘ Finally, one must mention that this good agreement between
10 1.5 20 quantum and semiclassical calculations has also been found
(action)/2n when considering quantum Green's functio®{q,do,2)
with other initial or final points.

IFil

FIG. 3. Modulus of the windowed Fourier transforiig (solid
line, upper plotandF (solid line, lower plo}, see Eq(105), of the
quantum functiongy, (leading order ink) and g, (first order# D. # corrections for Tr G(q,9,2)
correction, see Eq(104), associated with the quantum Green func-

tion G(q,qo,2) in the case of the 2D hydrogen atom in a magnetic . .
field and forq=qy=0 (see Sec. VI for all details As expected modulus of the windowed Fourier transforms gﬁj‘(g) and

from semiclassical formulé25), peaks are appearing at actiére., gtlr(g)1 Fg (upper plot,_ solid ling andFY (lower plot, solid
[pdg/2m) corresponding to classical orbits having initial and final liN€), defined, as previously, as follows:

positions at the nucleus. For the first five ones, the trajectory in the

(u,v) plane are also plotted, the nucleus being depicted by the F"(s)z 6 fgmaxdgg(g —g”)g"(()e_iz”sg
black circle. The agreement with the semiclassical estimations of 0 (Lma)3J 0 max 0 '
these functiongdotted line$ is excellent, even if discrepancies in
the amplitude of last two peaks in the lower plot can be observed.

Still working at scaled energy= —0.1, Fig. 4 depicts the

. . P . . 5max i
These are actl_JaIIy a manlfestatlo_n of limitation of th_e Fourier trans- Ftlr(s) = sf dZ £(Lmax— g)gtlr(g)e—lzwsg_
form and not inaccurate calculations of thecorrections, as it is ({max)”7 0
emphasized by the quantitative comparigosing harmonic inver- (106
sion) displayed by Table II.

5.0 . .

energy e=—0.1, are displayed in Fig. 3. More precisely, 25 ]
0o(¢), and g1(¢) being known only on a finite interval e 00 <>
[0.{max], We have plotted the modulus of their windowed -25 1 / / s [
Fourier transforms, defined as follows: 505 / oY) %0 32 /

Fo(s)

6 [ fmax e
:<§mMFJ; dZ L(Zmax—{)o(£)e 127, (;] < §£7 E]
4.0 v g T \-
Fi(s)= — ﬁm@agwﬁmmywﬁ hiﬁ'\k )

(Lman®

w - \¥
(105) -2.0 |

-4.0 . : :
2.6 2.8 3.0 32

As expected, they depict peaks at the classical actions of {action)/2rn
plosed °Tb'ts' Whose trajectories .|u,(;) plane havg been FIG. 4. Modulus of the windowed Fourier transfornﬁg (solid
inserted in the figure, the black circle corresponding to thqine U o v
. ; - , upper plotandF7 (solid line, lower plo}, see Eq(106), of the

nucleus pO.S|t|0n: In the. flgu_re, the dotted lines Co.rreSpon.d uantum functiongy§ (leading order in%) and g (first order#
to the semiclassical estimations of the same functions usin rection), see Eq(104), associated with the trace of the quantum
the_ clas_sical properties g_ive_n by '_I'able . The (_:Iosed_ Orbit%Ereen’s fu’nction TG(q,a,Z) in the case of the 2D hydrogen atom
being either half of a periodic orbit or a periodic orbit, we j, 5 magnetic fieldsee Sec. VI for all detailsAs expected from
label a given close orbit with the four-disk code of the cor-gemjclassical formula65), peaks are appearing at actidhe.,
responding periodic orb[t32,33. $p dg/27) corresponding to classical periodic orbits, whose trajec-

For the leading order ith (upper plo}, as expected, the tories in the (1,0) plane are plottedthe nucleus being depicted by
agreement between the quantum results and the semiclassi@s black circlg. The agreement with the semiclassical estimation
estimation is excellent. For the first ordgrcorrection, the (dotted lineg is excellent, as it is emphasized by the quantitative
agreement is very good, but one can notice that there is @émparison(using harmonic inversigrdisplayed by Table V.
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TABLE I. Classical properties of closed orbits involved in the  TABLE lll. Classical properties of periodic orbits involved in
semiclassical expansion of the quantum Green'’s func&ita, q,,2) the semiclassical expansion of the trace of the quantum Green’s
of the 2D hydrogen atom in a magnetic field, for the cgseqq function TrG(q,q,2) of the 2D hydrogen atom in a magnetic field.
=0. Because each closed orbit corresponds either to a half-perioditheir trajectories in they,v) plane are shown in Fig. & is the
orbit or a periodic orbit, we have labeled them with the four-disk reduced actiorfi.e., $p dg/27), T, is the period,A|" is the leading
code of the corresponding periodic orf®2,33. Their trajectories  semiclassical amplitudey, is the Maslov index¢|" is the first order

in the (u,v) plane are shown in Fig. & is the reduced actiofi.e., h correction, given by the sur@,(T,)+C] "5(T)), see Eq(98).
fpdqg/2m), T, is the period,4, is the leading semiclassical ampli-
tudeﬁq is the Maslov index¢, is the first order: correction, given Code 31" Tfr A}r M
by the sumC,(0,0.T)) + C1 (0,0.T), see Eq(91). 1234 27098513  6.2041556  0.8278814 4

Code S T, A 3 @ 3.1299964  7.2002747  0.6164968 4
— 12434 3.2271681  7.5416406 05484791 5
13 1.0945705 24250933 02953426 1 733434 32722381  7.7484068 05558806 6
1243 1.564 998 2 3.6001374 0.1523650 2
121343 1.7910607 42862577 0.1095039 3 Code Cy(T) cI-§(T) cr
12124343 1.9335221 4.796 7758 0.0933687 4 ——
1212134343 2.0319482 52143233  0.0861420 5 1234 —0.622577 0026912 ~0.595665

1243 0.166 821 0.051 665 0.218 486

Code C,(00T) CI-50,0,T) ¢ 12434 —0.203536  0.058541 —0.144995
— 123434 —1.41705 0.07241 —1.34464
13 —0.2027699 0.0165394 —0.1862305
1243 —0.1194093 0.0197412 —0.099668 1
121343 —0.1482822 0.0411755 —0.1071067 cially the additional term arising from the Jacobian describ-
12124343 —0.1729906 0.0717480 —0.1012427 ing the change from the Cartesian to lo@lbng the periodic

orbit) coordinategsee Eq.(48)] and which contributes to a

1212134343 —0.192904 3 0.1174645 —0.0754398 ) h
large part of thei correction for the present orbits.

The trajectories in theu,v) plane associated with the peaks VII. CONCLUSION
are also plotted in the figure. The classical properties of the
corresponding periodic orbits are displayed by Table I.4a

Again the agreement is excellent between the quantum reg fth to¢ T its t K(T) th i
sults (solid lineg and the semiclassical estimatigdotted tl:(r)r?sGoreer?sprl‘?Jrr)\?:%inGEg’gz,E))’ ;]draifse tr(ac)eG((IaE;quf?)rr]

Iinee). Thet(rquantitative coma:lirison between the classical COzhaotic systems with smooth potential. The method is based
eff|C|entsCtr| and the values," extracted from the quantum ,, e classical Green's functions associated to the relevant
functiong”(¢) is given in Table IV. .T.he agreement is excel- trajectories, that is either going froqto g, in the propaga-
lent for the amplltud_e of the coeff|C|ents an_d_ls rather gooqor case or periodic orbits foK(T), together with adapted
for their phases, which emphasized the validity of the semiy,, ngary conditions. We have shown how all quantities can

classical formula developed in the preceding sections, espge obtained by integrating, using the standard Runge-Kutta
method, sets of differential equations. We have also shown

In summary, we have explained in this paper how to ef-
ctively computef corrections in the semiclassical expan-

TABLE II. Numerical comparison between the theoretidal
corrections(, for the quantum Green’s functioB(q,qo,2) of the TABLE IV. Numerical comparison between the theoretidal
2D hydrogen atom in a magnetic field, for the caseqo=0 and  correctionsC|" for the trace of the quantum Green's function
the numerical coefficientS,H' extracted from exact quantum func- Tr G(q,q,2) of the 2D hydrogen atom in a magnetic field and the
tion g,(¢) [Eq. (104] using harmonic inversioritaking into ac-  numerical coefficients ' extracted from exact quantum function
count multiplicity). The agreement is excellent for the amplitudes g¥(2) [Eq. (104] using harmonic inversioritaking into account
and rather nice on the phases, thus emphasizing the validity of thgyltiplicity). The agreement is excellent for the amplitudes and
present theory. That the agreement becomes less good for the lagther nice on the phases, thus emphasizing the validity of the
orbit onIy shows the limitations of the harmonic inversion methOd,present thec)ryl especia"y the additional term due to the transforma-
which usually appear on the phase. tion from the Cartesian coordinates to the local frame along the
periodic orbit[see Eq.(48)].

Code G [cM]  Rel.error argC{"
13 ~0.1862305 0.1864 ~8x10°% 1.002Xm Code ¢t €] Rel. Eror  argCi"
1243 —0.0996681 0.0995 ~2x10 % 1.01Xw 1234 —0.595665 0.5958 =~2x10*  1.005<
121343 —0.1071067 0.1072 ~9%x10°* 1.02Xmw 1243 0.218 486 0.2178 ~3x10"%  0.04x
12124343 —0.1012427 0.1016 ~4x10° 1.04xw 12434 —0.144995  0.147 =~1x102 093w
1212134343 —0.0754398 0.0761 ~9x10° 3 1.14xx 123434 —1.34464 1.347 ~2x10% 098w
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that in the derivation of the semiclassical expansiorkf(r) 1 a 0 0 0

[and thusG(E)], starting from the Feynman path integral, 0 1 0 o 0

one must take into account additional terms, which affect

only % correction coefficients. This is emphasized by the 0 a AN O 0

excellent agreement observed when comparing, in the case M(T)= 0 a 0 \ o |’ (A2)
of the 2D hydrogen atom in a magnetic field, our theoretical 2 ) '2

results with the numerical coefficients extracted from exact

quantum data, using the harmonic inversion. Obviously, 0 axy_, 0 O Nof»

there are still many points to be developed. Besides the few

cases, such as self-retracing orbits or continuous families Gfhere we have supposed that all eigenvalues are simple. For
orbits, needing specific extensions, it would be very interestyegenerated eigenvaluelsl(T) would be block diagonal.

ing to understand how to include continuous and discret¢qor 5 generic periodic orbite) and «; are nonvanishing
symmetries. Also, going into the extended phase SPacgmphasizing thus that, is not an eigenvector ok (T).

(g,t,p,—E) [22], it would be possible to get a better under- . ~ , )
standing of similarities observed between the differential setlsmmdUCIng the vectoe, defined as follows:

leading, on one side to thie corrections for the propagator 2f—2

and its trace and, on the other side to the additional terms ~ _ ‘ . 9
arising in thefi corrections for the quantum Green’s function e=et ,-21 pig with  p;= 1\ (A3)
and its trace.
one immediately gets that
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APPENDIX: FEW PROPERTIES OF M(T)

X ~
In this Appendix, we consider an isolated unstable peri- XM(0)=~ IX] e (A5)
odic orbit of periodT. We shall use the notatiores and e, “
for the units vectors, which are, respectively, parallel to the
flow and perpendicular to the energy shell at the initial point S© that we have
From Hamilton’s equations, we have th4(T)-e =g, i.e., )
e/ is an eigenvector of the matrM (T) for the eigenvalue 1. a)=|X|?dT. (A6)

The symplectic equation fulfilled byM(T), namely,

M(T)"-3-M(T)=%, implies that, if g and ¢ are two
eigenvectors for the eigenvalues and \;, we have the
following properties:

1
M(T)T~(2&)=;(Ee).

()\i)\j—l)e,TEGj=0, (Al)

showing thus that 4/ is an eigenvalue of1(T) and_,from
that, of M(T). In addition,M(T) being a real matrix\; and

1/x; are also eigenvalues d¥1(T), so that the nontrivial
eigenvalueqi.e., #1) either fall in the {,1/A) pair or in
quadruplet §,1/\,\,1/\).

In the case ok =g, the two preceding equatiorté1)
imply thate, is an eigenvector of1(T) " [but not necessar-
ily of M(T)] for the eigenvalue 1 and that for evewy
#1, ¢ is an orthogonal toe . In the basis
(e.,e ,&, ... .&5-2), M(T) entries then read

In Sec. V, one needs to compute derivatives with respect
to the periodT of defm(T) — 1], whose expression in terms
of the nontrivial eigenvalues of the monodromy matrix reads

2f-2

defm(T)—1]= ,Hl (A= 1). (A7)

Introducing? andP, the projectors on the directiors and
e, , more precisely,

Pi=¢-¢ and P =e e (A8)
ones defines the matriX(T) as follows:
N(T)=M(T)—(1-P)—=P,). (A9)

In the basis € ,e, e, ... .6 ), using orthogonality
betweene, ande;, entries ofN(T) read
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M1 Q| Y1 Y2 Vo2 ] but this is not necessary in our case. This shows that the
0o 1 0 0 ... 0 determinant oN(T) is exactlylT?;%(\;—1). The main ad-
vantage of the matriN(T) is that its expressiofA9) does
N(T)= 0 o M-l 0 T 0 not involve the eigenvectors or the eigenvalue$d/qT), so
0 a 0 ANo—1 - 0 ’ that its determinant can be directly computed, without the
diagonalization stage required when getting[ oéil) —1]
through the eigenvaluea;. Furthermore, derivatives of
[0 azr 0 0 RS TE IndetN(T) with respect to the periodl are also straightfor-
(A10)  Ward to obtain, knowing derivatives &fi(T) and of X(T),
whereas derivatives af; would require the knowledge of
wherey; =q‘T -€;, which actually could be related to thg, those of the eigenvectoes.
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